
Advanced Design System 2011.01 - Numeric Components

1

Advanced Design System 2011.01

Feburary 2011
Numeric Components

Advanced Design System 2011.01 - Numeric Components

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - Numeric Components

3

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Advanced Design System 2011.01 - Numeric Components

4

Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Advanced Design System 2011.01 - Numeric Components

5

being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - Numeric Components

6

 SerDes Example Designs . 15
 8b10b Coder and Decoder . 16
 64b66b Coder and Decoder . 19
 Blind Adaptive Decision Feedback Equalizer . 22
 Adaptive Decision Feedback Equalizer with Training Sequence . 25

 WMAN Example Designs . 28
 Agilent Instrument Compatibility . 29
 WMAN IEEE 802.16 Specifications . 30
 WMAN System Designs . 31
 WMAN Design Example Descriptions . 45
 References . 54

 Numeric Advanced Comm Components . 55
 AddGuard . 56
 ConvolutionalCoder . 60
 CRC_Coder . 63
 CRC_Decoder . 65
 Deinterleaver802D . 66
 Demapper . 69
 Interleaver802 . 73
 LoadIFFTBuff802 . 76
 Mapper . 79
 MuxOFDMSym802 . 83
 RMSE . 87
 ViterbiDecoder . 88

 Numeric Communications Components . 93
 8b10bCoder . 95
 8b10bDecoder . 97
 64b66bCoder . 99
 64b66bDecoder . 103
 ADPCM_Coder . 105
 ADPCM_Decoder . 106
 ADPCM_FromBits . 107
 ADPCM_ToBits . 108
 AWGN_Channel . 109
 BlindDFE . 111
 BlindFFE . 114
 BlockPredictor . 118
 CoderRS . 120
 DecoderRS . 123
 DeScrambler . 127
 DeSpreader . 129
 DFE . 130
 FFE . 135
 FreqPhase . 140
 HilbertSplit . 141
 InterleaveDeinterleave . 142
 M_PSK . 143
 NoiseChannel . 147
 NonlinearDistortion . 148
 PAM2Rec . 149
 PAM2Xmit . 150
 PAM4Rec . 151

Advanced Design System 2011.01 - Numeric Components

7

 PAM4Xmit . 152
 PCM_BitCoder . 153
 PCM_BitDecoder . 154
 PhaseShift . 155
 PSK2Rec . 156
 PSK2Xmit . 157
 QAM4 . 158
 QAM4Slicer . 159
 QAM16 . 160
 QAM16Decode . 161
 QAM16Slicer . 162
 QAM64 . 163
 QAM64Decode . 164
 QAM64Slicer . 165
 RaisedCosine . 166
 RaisedCosineCx . 168
 RecSpread . 168
 Scrambler . 171
 Spread . 174
 TelephoneChannel . 175
 WalshCoder . 177
 XmitSpread . 179

 Numeric Control Components . 180
 ActivatePath . 182
 ActivatePath2 . 183
 AsyncCommutator . 184
 AsyncDistributor . 186
 Bus . 188
 BusMerge2 . 189
 BusMerge3 . 190
 BusMerge4 . 191
 BusMerge5 . 192
 BusMerge6 . 193
 BusMerge7 . 194
 BusMerge8 . 195
 BusMerge9 . 196
 BusSplit2 . 197
 BusSplit3 . 198
 BusSplit4 . 199
 BusSplit5 . 200
 BusSplit6 . 201
 BusSplit7 . 202
 BusSplit8 . 203
 BusSplit9 . 204
 Chop . 205
 ChopVarOffset . 209
 Commutator . 210
 Commutator2 . 211
 Commutator3 . 212
 Commutator4 . 213
 Delay . 214
 DeMux . 215

Advanced Design System 2011.01 - Numeric Components

8

 DeMux2 . 216
 Distributor . 217
 Distributor2 . 218
 Distributor3 . 219
 Distributor4 . 220
 DownSample . 221
 DSampleWOffset . 222
 EnableUDSample . 224
 Fork . 225
 Fork2 . 226
 Fork3 . 227
 Fork4 . 228
 Fork5 . 229
 Fork6 . 232
 Fork7 . 234
 Fork8 . 236
 Fork9 . 238
 IfElse . 240
 InitDelay . 244
 Mux . 245
 Mux2 . 246
 Repeat . 247
 Reverse . 248
 Trainer . 249
 Transpose . 250
 UpSample . 251
 VarDelay . 254

 Numeric Fixed-Point DSP Components . 255
 AbsSyn . 258
 AccumSyn . 259
 AddRegSyn . 261
 AddSyn . 263
 And2Syn . 265
 AndSyn . 266
 BarShiftSyn . 268
 BitFillSyn . 270
 BPSKSyn . 271
 BufferSyn . 272
 Bus8MergeSyn . 273
 Bus8RipSyn . 274
 BusMergeSyn . 275
 BusRipSyn . 276
 CastSyn . 277
 CombFiltSyn . 278
 Comp6Syn . 280
 CompSyn . 281
 ConstSyn . 282
 CountCombSyn . 283
 CounterSyn . 284
 Div2ClockSyn . 285
 DPRamRegSyn . 286
 DPRamSyn . 288

Advanced Design System 2011.01 - Numeric Components

9

 DPSKSyn . 290
 DualNCOSyn . 292
 FIRSyn . 294
 FixedGainSyn . 297
 FixToFloatSyn . 298
 FloatToFixSyn . 299
 FSMSyn . 300
 GainSyn . 302
 IntegratorSyn . 303
 LCounterSyn . 305
 MultRegSyn . 306
 MultSyn . 309
 Mux2Syn . 310
 Mux3Syn . 311
 Mux4Syn . 312
 MuxSyn . 313
 Nand2Syn . 315
 NCOSyn . 316
 Nor2Syn . 318
 NotSyn . 319
 OQPSKSyn . 320
 Or2Syn . 322
 OrSyn . 323
 PI4DQPSKSyn . 325
 PSK8Syn . 327
 QPSKSyn . 329
 RamRegSyn . 331
 RamSyn . 333
 RegSyn . 335
 RomRegSyn . 337
 RomSyn . 339
 SerialFIRSyn . 341
 ShiftRegPPSyn . 343
 ShiftRegPSSyn . 345
 ShiftRegSPSyn . 346
 SineCosineSyn . 347
 SinkRespSyn . 349
 SinkStimSyn . 350
 SubRegSyn . 351
 SymFIRSyn . 353
 Xor2Syn . 356
 XorSyn . 357
 ZeroInterpSyn . 359

 Numeric Logic Components . 360
 DFF . 361
 DivByN . 363
 JKFF . 365
 LFSR . 367
 Logic . 374
 LogicAND . 375
 LogicAND2 . 376
 LogicInverter . 377

Advanced Design System 2011.01 - Numeric Components

10

 LogicLatch . 378
 LogicNAND . 380
 LogicNAND2 . 381
 LogicNOR . 382
 LogicNOR2 . 383
 LogicOR . 384
 LogicOR2 . 385
 LogicXNOR . 386
 LogicXNOR2 . 387
 LogicXOR . 388
 LogicXOR2 . 389
 Multiple . 390
 Test . 391
 TestEQ . 392
 TestGE . 393
 TestGT . 394
 TestLE . 395
 TestLT . 396
 TestNE . 397

 Numeric Math Components . 398
 Abs . 400
 Add . 401
 Add2 . 403
 AddCx . 404
 AddCx2 . 405
 AddFix . 406
 AddFix2 . 408
 AddInt . 410
 AddInt2 . 411
 Average . 412
 AverageCx . 413
 AverageCxWOffset . 414
 Cos . 415
 DB . 416
 DivByInt . 417
 Exp . 418
 Floor . 419
 Gain . 420
 GainCx . 421
 GainFix . 422
 GainInt . 424
 Integrate . 425
 Ln . 426
 Math . 426
 MathCx . 429
 MaxMin . 432
 Modulo . 433
 ModuloInt . 434
 Mpy . 435
 Mpy2 . 436
 MpyCx . 437
 MpyCx2 . 438

Advanced Design System 2011.01 - Numeric Components

11

 MpyFix . 439
 MpyFix2 . 441
 MpyInt . 443
 MpyInt2 . 444
 Reciprocal . 445
 SDC1 . 446
 SDC2 . 447
 SDC3 . 448
 SDC4 . 449
 SDCCx1 . 450
 SDCCx2 . 451
 SDCCx3 . 452
 SDCCx4 . 453
 Sgn . 454
 Sin . 455
 Sinc . 456
 Sqrt . 457
 Sub . 458
 SubCx . 459
 SubFix . 460
 SubInt . 462
 Trig . 463
 TrigCx . 464
 Variance . 465

 Numeric Matrix Components . 466
 Abs_M . 468
 Add2_M . 469
 AddCx2_M . 470
 AddCx_M . 471
 AddFix2_M . 472
 AddFix_M . 474
 AddInt2_M . 476
 AddInt_M . 477
 Add_M . 478
 AvgSqrErr_M . 479
 Conjugate_M . 480
 Delay_M . 481
 GainCx_M . 482
 GainFix_M . 483
 GainInt_M . 485
 Gain_M . 486
 Hermitian_M . 487
 InverseCx_M . 488
 InverseFix_M . 489
 InverseInt_M . 491
 Inverse_M . 492
 Kalman_M . 493
 MpyCx_M . 495
 MpyFix_M . 496
 MpyInt_M . 498
 Mpy_M . 499
 MpyScalarCx_M . 500

Advanced Design System 2011.01 - Numeric Components

12

 MpyScalarFix_M . 501
 MpyScalarInt_M . 503
 MpyScalar_M . 504
 MxCom_M . 505
 MxDecom_M . 506
 PackCx_M . 508
 PackFix_M . 509
 PackInt_M . 510
 Pack_M . 511
 SampleMean_M . 512
 SubCx_M . 513
 SubFix_M . 514
 SubInt_M . 516
 Sub_M . 517
 SubMxCx_M . 518
 SubMxFix_M . 519
 SubMxInt_M . 520
 SubMx_M . 521
 SVD_M . 522
 TableCx_M . 524
 TableInt_M . 526
 Table_M . 528
 ToeplitzCx_M . 530
 ToeplitzFix_M . 531
 ToeplitzInt_M . 533
 Toeplitz_M . 534
 TransposeCx_M . 535
 TransposeFix_M . 536
 TransposeInt_M . 537
 Transpose_M . 538
 UnPkCx_M . 539
 UnPkFix_M . 540
 UnPkInt_M . 541
 UnPk_M . 542

 Numeric Signal Processing Components . 543
 Autocor . 545
 Biquad . 547
 BiquadCascade . 549
 BlockAllPole . 550
 BlockFIR . 550
 BlockLattice . 554
 BlockRLattice . 556
 Burg . 558
 ConvolCx . 560
 Convolve . 561
 CrossCorr . 563
 DelayEstimator . 565
 DTFT . 567
 FFT_Cx . 569
 FIR . 571
 FIR_Cx . 573
 FIR_Fix . 575

Advanced Design System 2011.01 - Numeric Components

13

 Hilbert . 578
 IIR . 580
 IIR_Cx . 582
 IIR_Fix . 584
 Lattice . 587
 LevDur . 589
 LMS . 591
 LMS_Cx . 593
 LMS_Leak . 595
 LMS_OscDet . 597
 PattMatch . 599
 RLattice . 601
 SlidWinAvg . 603

 Numeric Sources . 604
 Bits . 606
 ComplexExp . 608
 Const . 609
 ConstCx . 610
 ConstFix . 611
 ConstInt . 612
 Cx_M . 613
 DataPattern . 614
 DiagonalCx_M . 615
 DiagonalFix_M . 616
 DiagonalInt_M . 617
 Diagonal_M . 618
 Fix_M . 619
 Float_M . 620
 IdentityCx_M . 621
 IdentityFix_M . 622
 IdentityInt_M . 623
 Identity_M . 624
 IID_Gaussian . 625
 IID_Uniform . 626
 ImpulseFloat . 627
 Int_M . 628
 NumericExpression . 629
 NumericSource . 630
 RampFix . 632
 RampFloat . 634
 RampInt . 635
 ReadFile . 636
 ReadFilePreProc . 637
 Rect . 638
 RectCx . 639
 RectCxDoppler . 640
 RectFix . 641
 SineGen . 642
 WaveForm . 643
 WaveFormCx . 645
 Window . 647

 Numeric Special Functions . 649

Advanced Design System 2011.01 - Numeric Components

14

 AdaptLinQuant . 650
 Compress . 651
 DeadZone . 653
 Dirichlet . 655
 Expand . 656
 LatchClocked . 658
 Limit . 659
 LinQuantIdx . 661
 MuLaw . 662
 OrderTwoInt . 663
 PcwzLinear . 664
 Polynomial . 665
 Quant . 665
 QuantIdx . 669
 Quantizer . 671
 Quantizer2D . 672
 SchmittTrig . 675
 Table . 677
 TableCx . 678
 TableInt . 679
 Toggle . 680
 Unwrap . 681

Advanced Design System 2011.01 - Numeric Components

15

 SerDes Example Designs
This section includes the following Serializer/Deserializer (SerDes) application example
designs:

8b10b Coder and Decoder
64b66b Coder and Decoder
Blind Adaptive Decision Feedback Equalizer
Adaptive Decision Feedback Equalizer with Training Sequence

Advanced Design System 2011.01 - Numeric Components

16

 8b10b Coder and Decoder
Location: /examples/DSP/serdes_wrk

 Objective

This example demonstrates 8b10b coder and decoder (8B/10B Encoding and 8B/10B
Decoding) simulation capability.

 Setup

Data bytes and Control bits (K) are read from files. In bit serial transmission, for each
octet data in an 8-bit sequence, the LSB is assumed to be transmitted first, while the MSB
is transmitted last.

 Analysis

Advanced Design System 2011.01 - Numeric Components

17

 Source bytes before 8b10b Encoder and Decoded bytes after 8b10b Decoder

Advanced Design System 2011.01 - Numeric Components

18

 Control bits before 8b10b Encoder and Decoded Control bits after 8b10b Decoder

 Notes/Equations

Read the dds to see the transmitted bytes and control bits are correctly decoded.

Advanced Design System 2011.01 - Numeric Components

19

 64b66b Coder and Decoder
Location: /examples/DSP/serdes_wrk

 Objective

This example demonstrates 64b66b coder and decoder (64B/66B Encoding and 64B/66B
Decoding) simulation capability.

 Setup

Data bytes and Control bits are read from files. In bit serial transmission, for each octet
data in an 64-bit sequence, the LSB is assumed to be transmitted first, while the MSB is
transmitted last.

 Analysis

Advanced Design System 2011.01 - Numeric Components

20

 Source bytes before 64b66b Encoder and Decoded bytes after 64b66b Decoder

Advanced Design System 2011.01 - Numeric Components

21

 Control bits before 64b66b Encoder and Decoded Control bits after 64b66b Decoder

 Notes/Equations

Read the dds to see the transmitted bytes and control bits are correctly decoded.

Advanced Design System 2011.01 - Numeric Components

22

 Blind Adaptive Decision Feedback Equalizer
Location: /examples/DSP/serdes_wrk

 Objective

This example demonstrates basic SerDes simulation capability with an interactive user
interface. 64b66b encoder, decoder and Blind DFE are illustrated.

 Setup

A random bitstream is created and a 64b66b encoder is applied. These encoded data are
modulated as NRZ (BPSK) data. Then in time-domain, an equivalent low-pass channel is
applied which introduces ISI (intersymbol interference). At the receiver side, the time-
domain waveform is sampled (1x, 2x or more ratio), and a blind DFE equalizer is
employed to remove ISI. This example allows the user to interactively adjust the channel
characters, equalizer parameters and instantly see the results on a continually updating
eye diagram.

 Analysis

Advanced Design System 2011.01 - Numeric Components

23

 Eye before Equalization.

 Eye after Equalization.

Advanced Design System 2011.01 - Numeric Components

24

 Source bits before 64b66b Encoder and Decoded bits by 64b66b Decoder

 Notes/Equations

Observe the eye diagram change before and after equalizer. Read the dds to see the
transmitted bits are correctly decoded.

Advanced Design System 2011.01 - Numeric Components

25

 Adaptive Decision Feedback Equalizer with Training
Sequence
Location: /examples/DSP/serdes_wrk

 Objective

This example demonstrates basic SerDes simulation capability with an interactive user
interface. 8b10b encoder, decoder and DFE with training sequence are illustrated.

 Setup

A random bitstream is created and an 8b10b encoder is applied. These encoded data are
modulated as NRZ (BPSK) data. Then in time-domain, an equivalent low-pass channel is
applied which introduces ISI (intersymbol interference). At the receiver side, the time-
domain waveform is sampled (1x, 2x or more ratio), and a DFE equalizer is employed to
remove ISI. This example allows the user to interactively adjust the channel characters,
equalizer parameters and instantly see the results on a continually updating eye diagram.

 Analysis

Advanced Design System 2011.01 - Numeric Components

26

 Eye before Equalization.

 Eye after Equalization.

Advanced Design System 2011.01 - Numeric Components

27

 Source bits before 8b10b Encoder and Decoded bits by 8b10b Decoder

 Notes/Equations

Observe the eye diagram change before and after equalizer. Read the dds to see the
transmitted bits are correctly decoded.

Advanced Design System 2011.01 - Numeric Components

28

 WMAN Example Designs
WMAN example designs created in ADS are based on the IEEE 802.16d Standard. These
designs (constructed using the new Numeric Advanced Comm components, basic ADS
components, and Matlab components) focus on the physical layer of WMAN systems.
These are intended to be a baseline system for designers to get an idea of what nominal
or ideal system performance would be. Evaluations can be made regarding degraded
system performance due to system impairments that may include nonideal component
performance.

Access the designs from the ADS Main window: File > Open > Example > Com_Sys >
WMAN_802_16d_TX_wrk.

The ADS2004A designs focus on transmitters: Test_WMAN_RFSource for testing a DUT
under a WMAN frequency division duplex downlink system; Test_WMAN_CodedSignals for
generating fully-coded signals; and, Test_WMAN_ESG for downloading WMAN data to an
ESG. Receiver designs will be addressed beyond ADS2004A.

Advanced Design System 2011.01 - Numeric Components

29

 Agilent Instrument Compatibility
These WMAN designs can be used for downloading data to Agilent instrument through
ESG_E4438C_Sink or CM_ESG_E4438C_Sink. WMAN data can drive Agilent ESG
instruments such as E443xB or E4438C to generate RF signals. Using these RF WMAN
signals from an E4438C, WMAN device under test (DUT) can be tested. Basic system
performances can be measured using Agilent 89600 Series Vector Signal Analyzer (VSA)
for spectrum as well as waveforms.

The table below lists instrument models and Firmware revisions.

 Agilent Instrument Compatibility Information

WMAN Designs ESG Models VSA Models

SpecVersion=802.16d,Dec. 2003 E443xB, Firmware Revision B.03.75 89600 Series, software version 5.0

For more information about the ESG series digital and analog RF signal generators, visit
http://www.agilent.com/find/ESG

For more information about the 89600 series vector signal analyzers, visit
http://www.agilent.com/find/89600

http://www.agilent.com/find/ESG
http://www.agilent.com/find/ESG
http://www.agilent.com/find/89600
http://www.agilent.com/find/89600

Advanced Design System 2011.01 - Numeric Components

30

 WMAN IEEE 802.16 Specifications
IEEE 802.16a was initiated for WMAN systems. The revised version IEEE 802.16d [1]
specifies the air interface of a fixed (stationary) point-to-multipoint broadband wireless
access system providing multiple services in a wireless metropolitan area network. The
standard includes a particular PHY specification applicable to systems operating at 2- to
11-GHz. The 2- to 11-GHz air interface has options such as WirelessMAN-SCa,
WirelessMAN-OFDM, WirelessMAN-OFDMA, and WirelessHUMAN.

WMAN standards for both WirelessMAN-OFDM and WirelessMAN-OFDMA have physical
layers based on OFDM. OFDM transmits data simultaneously over multiple, parallel
frequency sub-bands and offers robust performance under severe radio channel
conditions. OFDM also provides a convenient method for mitigating delay spread effects. A
cyclic extension of the transmitted OFDM symbol can be used to achieve a guard interval
between symbols. Provided that this guard interval exceeds the excess delay spread of the
radio channel, the effect of the delay spread is constrained to frequency selective fading of
the individual sub-bands. This fading can be canceled by means of a channel
compensator, which takes the form of a single tap equalizer on each sub-band.

IEEE 802.16d OFDM physical layer settings are listed in the table below.

 OFDM Physical Layer Specifications

Specification Settings

Information data rate 4-70 Mbps

Modulation QPSK OFDM, 16QAM OFDM, and 64QAM OFDM

Error correcting code Reed-Solomon plus Convolutional Code

Overall Coding rate 1/2, 3/4, 2/3

Basic FFT Size 256

Number of subcarriers 200, DC nulled

Number of Pilot tones 8

Cyclic Prefix (or Guard Interval) 1/32,1/16,1/8 and 1/4 symbol period

Advanced Design System 2011.01 - Numeric Components

31

 WMAN System Designs
WMAN system design basic components include signal sources, channels, receivers, and
measurements. Signal sources and measurements based on WirelessMAN-OFDM are the
focus in ADS2004A.

 Signal Sources

IEEE 802.16d FDD DL signal sources are provided in the example workspace. Based on
the 16d Standard, a WMAN 16d downlink PHY PDU is defined (see OFDM Frame Structure
with FDD DL) that starts with a long preamble for PHY synchronization. The preamble is
followed by a frame control header (FCH) burst. The FCH burst is one OFDM symbol long
and is transmitted using QPSK rate 1/2 with the mandatory coding scheme.

The FCH is followed by one or multiple downlink bursts, each transmitted with different
burst profiles. Each downlink burst consists of an integer number of OFDM symbols, and
its burst profiles are specified by a 4-bit DIUC in the DL-MAP. DIUC encoding is defined in
the DCD messages.

 OFDM Frame Structure with FDD DL

With the OFDM PHY, a PHY burst (downlink or uplink), consists of an integer number of
OFDM symbols carrying medium access control (MAC) messages, i.e., MAC PDUs. To form
an integer number of OFDM symbols, a burst payload can be padded by the bytes 0xFF.
The payload is then scrambled, encoded, and modulated using the burst PHY parameters
specified by the 16d Standard.

The example designs are to aid in understanding the WMAN 802.16d transmission system
and to find its basic performance in the physical layer. Simulation will generate single
bursts of data, formatted for downlink in the mandatory coding schemes.

Advanced Design System 2011.01 - Numeric Components

32

The figure below shows an OFDM frame structure for the WMAN FDD DL system in the
Test_WMAN_CodedSignal example; this figure highlights the main components at the sub-
system level. (Refer to Fully-Coded Signal Generation for details regarding this design.)

 WMAN FDD DL System in ADS: Test_WMAN_CodedSignal

To understand WMAN FDD DL signal generation, basic components for constructing sub-
systems will be described, then sub-system components such as preamble generation,
FCH channel, data generation, OFDM modulation, multiplexing, and measurements for
WMAN systems will be described.

Advanced Design System 2011.01 - Numeric Components

33

 Basic Components

This section describes the basic components used in the designs; for details regarding
each design, refer to WMAN Design Example Descriptions.

 Data Modulation

After bit interleaving, data bits in both FCH and DL data channels are entered serially to
the constellation mapper. Gray-mapping is needed for data modulation and the
constellations are specified in Section 8.3.3.4 in 802.16d. In the WMAN examples, Mapper
(Numeric Advanced Comm library) provides Gray-mapped QPSK, 16QAM and 64QAM
modulations.

 Pilot Modulation

Pilot subcarriers are inserted into each data burst in order to constitute the symbol and
these are modulated according to their carrier location within the OFDM symbol. A PRBS
generator will be used to produce a sequence. The polynomial for the PRBS generator is X
11 + X 9 + 1.

The pilot modulation value for OFDM symbol k is derived from w k . On the downlink,

index k represents the symbol index relative to the beginning of the downlink subframe;
on the uplink, index k represents the symbol index relative to the beginning of the burst.
For uplink and downlink, the first symbol of the preamble is denoted by k=1. Downlink
and uplink initialization sequences are shown in PRBS for Pilot Modulation. For the
downlink, this results in the sequence 11111111111000000000110... where the third 1 (w

3 =1) will be used in the first OFDM downlink symbol following the frame preamble. For

each pilot (indicated by frequency offset index), BPSK modulation will be derived as
follows:

 PRBS for Pilot Modulation

Advanced Design System 2011.01 - Numeric Components

34

To implement the pilot PRBS sequence in ADS, an LFSR component is used with
parameter settings: Seed=2047 (corresponding to the initial sequence: 1 1 1 1 1 1 1 1 1
1 1) and FeedbackList="11 9". The random data generated from the LFSR can be recorded
as a data file; a WaveFormCx component is used to read this data and output as the PRBS
sequence for pilot modulation.

 Multiplexing for Frame Structure

In the WMAN examples, the AsyncCommutator component with BusMerge2 is used to
multiplex 2 different data/signals/preambles as shown in WMAN FDD DL System in ADS:
Test_WMAN_CodedSignal. With BusMerge3, AsyncCommutator can be used for
multiplexing 3 data/signals/preambles and with BusMerge4 for multiplexing 4
data/signals/preambles.

 Channel Coding Components

Channel coding components will be used for both FCH and data channels. Key components
for channel coding include a scrambler component, forward error correction (FEC)
component, and an interleaver component.

The Scrambler component scrambles data with the appropriate LFSR initialization for
uplink or downlink.

The shift-register of the randomizer is initialized for each new allocation. The PRBS
generator is shown in Scrambling Data Generation. Each data byte to be transmitted is
sequentially entered into the randomizer, MSB first. Preambles are not randomized. The
seed value is used to calculate the randomization bits, which are combined in an XOR
operation with the serialized bit stream of each burst. The randomizer sequence is applied
only to information bits.

 Scrambling Data Generation

The bits issued from the randomizer are applied to the encoder. On the downlink, the
randomizer is re-initialized at the start of each frame with the sequence: 1 0 0 1 0 1 0 1 0
0 0 0 0 0 0.

To implement the scrambler, an LFSR component is used with parameter settings:
Seeds=38144 (corresponding to initial sequence 1 0 0 1 0 1 0 0 0 0 0 0 0) and

Advanced Design System 2011.01 - Numeric Components

35

FeedbackList="15 14". The random data generated from the LFSR can be recorded as a
data file; a WaveFormCx component is used to read this data and output as the scramble
sequence.

WMAN FEC, consisting of the concatenation of a Reed-Solomon outer code and a rate-
compatible convolutional inner code, supports uplink and downlink. BTC and CTC support
is optional. The Reed-Solomon convolutional coding rate 1/2 is used as the coding mode
when requesting access to the network and in the FCH burst. Encoding is performed by
first passing data in block format through the RS encoder.

Reed-Solomon encoding is derived from a systematic RS(N=255, K=239, T=8) code using
GF(2 8), where N is the number of overall bytes after coding, K is the number of data
bytes before coding and T is the number of the data bytes that can be corrected. 802.16d
systems uses much smaller code blocks by puncturing the large code blocks down to the
required size.

In the WMAN_CodedSignals example a CoderRS component is used to generate the RS
code based on 802.16d.

Each RS block is followed by the binary convolutional encoder with native rate of 1/2, a
constraint length of 7, using polynomial codes to drive its code bits; the encoder is
illustrated below.

 Convolutional Encoder, Rate 1/2

Convolutional coded data will be punctured before interleaving. Puncturing patterns and
serialization order used to realize different code rates are given in Inner Convolutional
Code with Puncturing, where 1 denotes a transmitted bit, 0 denotes a removed bit, and X
and Y are in reference to Convolutional Encoder, Rate 1/2.

 Inner Convolutional Code with Puncturing

Advanced Design System 2011.01 - Numeric Components

36

 Code Rates

Rate 1/2 2/3 3/4 5/6

dfree 10 6 5 4

X 1 10 101 10101

Y 1 11 110 11010

XY X1Y1 X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5

Channel Coding Rates gives the block sizes and the code rates used for different
modulations and code rates. As 64QAM is optional, modulation codes are implemented
only if modulation is implemented.

 Channel Coding Rates

Modulation Uncoded Block Size
(bytes)

Coded Block Size
(bytes)

Overall Coding
Rate

RS Code CC Code
Rate

QPSK 24 48 1/2 (32, 24, 4) 2/3

QPSK 36 48 3/4 (40, 36, 2) 5/6

16QAM 48 96 1/2 (64, 48, 8) 2/3

16QAM 72 96 3/4 (80, 72, 4) 5/6

64QAM 96 144 2/3 (108, 96,
6)

3/4

64QAM 108 144 3/4 (120, 108,
6)

5/6

An interleaver is used for coded signals. All encoded data bits are interleaved by a block
interleaver with a block size corresponding to the number of coded bits per the allocated
subchannels per OFDM symbol N cbps. The interleaver is defined by a 2-step permutation:

the first ensures that adjacent coded bits are mapped onto nonadjacent subcarriers; the
second ensures that adjacent coded bits are mapped alternately onto less or more
significant bits of the constellation, thus avoiding long runs of low reliable bits. The
Interleaver802 component performs the 2-step interleaving for the WMAN system.

The sub_RS_CC shown in FEC Subnetwork sub_RS_CC demonstrates how to generate the
fully-coded signal using an RS-CC coding scheme based on 802.16d.

 FEC Subnetwork sub_RS_CC

This subnetwork includes a Reed-Solomon encoder component CoderRS, a convolutional
encoder component ConvolutionalCoder, and interleaver component Interleaver802. Two
subnetwork puncturing components were built for this design; by default sub_PuncRSCC is

Advanced Design System 2011.01 - Numeric Components

37

activated and sub_Puncturing is deactivated.

The sub_PuncRSCC subnetwork shown in sub_PuncRSCC Puncturing for CC Code
Rate 2/3 is used for puncturing coded data for CC code rate 2/3 only (see Channel
Coding Rates). If all CC code rates need to be supported, several subnetworks are
needed using an IfElse component to switch the subnetwork for different RateID.
The sub_Puncturing subnetwork shown in sub_Puncturing Puncturing for All CC Code
Rates supports all CC code rates defined in 802.16d.
To import Matlab functions for puncturing, a MatlabLibLink Function parameter is
specified to the Matlab function rsccpunc.m that is created based on the puncturing
given in Channel Coding Rates. This simple Matlab m file can be found in
WMAN_802_16d_TX_wrk/data. For details regarding MatlabLibLink, refer to MATLAB
Cosimulation Introduction (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

 sub_PuncRSCC Puncturing for CC Code Rate 2/3

 sub_Puncturing Puncturing for All CC Code Rates

 Preambles

All preambles are structured as either one of two OFDM symbols as specified in Section
8.3.3.6 Draft IEEE 802.16d Std [1].

The first preamble in the downlink PHY PDU (as well as the initial ranging preamble)
consists of two consecutive OFDM symbols (the combination of the two OFDM symbols is
referred to as the long preamble). The first OFDM symbol uses only subcarriers indices

Advanced Design System 2011.01 - Numeric Components

38

that are a multiple of 4. As a result, the time domain waveform of the first symbol
consists of 4 repetitions of 64-sample fragment, preceded by a cyclic prefix (CP). The
second OFDM symbol uses only even subcarriers, resulting in a time domain structure with
2 repetitions of a 128-sample fragment, preceded by a CP. The time domain structure is
illustrated below.

 Downlink and Network Entry Preamble Structure

The frequency domain sequences for all full-bandwidth preambles are derived from the
sequence:
Pall(-100:100)={1-j, 1-j, -1-j, 1+j, 1-j, 1-j, -1+j, 1-j, 1-j, 1-j, 1+j, -1-j, 1+j, 1+j, -1-j,
1+j, -1-j, -1-j, 1-j, -1+j, 1-j, 1-j, -1-j, 1+j, 1-j, 1-j, -1+j, 1-j, 1-j, 1-j, 1+j, -1-j, 1+j, 1+j,
-1-j, 1+j, -1-j, -1-j, 1-j, -1+j, 1-j, 1-j, -1-j, 1+j, 1-j, 1-j, -1+j, 1-j, 1-j, 1-j, 1+j, -1-j, 1+j,
1+j, -1-j, 1+j, -1-j, -1-j, 1-j, -1+j, 1+j, 1+j, 1-j, -1+j, 1+j, 1+j, -1-j, 1+j, 1+j, 1+j, -1+j,
1-j, -1+j, -1+j, 1-j, -1+j, 1-j, 1-j,1+j, -1-j, -1-j, -1-j, -1+j, 1-j, -1-j, -1-j, 1+j, -1-j, -1-j,
-1-j, 1-j, -1+j, 1-j, 1-j, -1+j, 1-j, -1+j,-1+j, -1-j, 1+j, 0, -1-j, 1+j, -1+j, -1+j, -1-j, 1+j,
1+j, 1+j, -1-j, 1+j, 1-j, 1-j, 1-j, -1+j, -1+j, -1+j, -1+j, 1-j, -1-j, -1-j, -1+j, 1-j, 1+j, 1+j,
-1+j, 1-j, 1-j, 1-j, -1+j, 1-j, -1-j, -1-j, -1-j, 1+j,1+j, 1+j, 1+j, -1-j, -1+j, -1+j, 1+j, -1-j,
1-j, 1-j, 1+j, -1-j, -1-j, -1-j, 1+j, -1-j, -1+j, -1+j, -1+j, 1-j, 1-j, 1-j, 1-j, -1+j, 1+j, 1+j, -
1-j, 1+j, -1+j, -1+j, -1-j, 1+j, 1+j, 1+j, -1-j, 1+j, 1-j, 1-j, 1-j, -1+j, -1+j, -1+j, -1+j, 1-
j, -1-j, -1-j, 1-j, -1+j, -1-j, -1-j, 1-j, -1+j, -1+j, -1+j, 1-j, -1+j,1+j, 1+j, 1+j, -1-j, -1-j, -
1-j, -1-j, 1+j, 1-j, 1-j}}

The frequency domain sequence for the 4 times 64 sequence P 4x64 is defined by:

The frequency domain sequence for the 2 times 128 sequence P EVEN is defined by:

Long Preamble Generation shows generation of the long preamble for a WMAN FDD
downlink transmitter.

Data file Preamble_1_16d.txt (located at WMAN_802.16d_TX_wrk/data) based on
the full-bandwidth preambles and 4 times 64 sequence equations can be used for the
frequency preamble with 4 times 64 sequence. This Preamble 1 will be generated by
using a WaveFormCx component referring to data file Preamble_1_16d.txt.
Using another WaveFormCx component referring to data file Preamble_2_16d.txt
based on full-bandwidth preambles and 2 times 128 sequence equations, Preamble 2
with 2 times 128 sequence will also be generated.

Advanced Design System 2011.01 - Numeric Components

39

BusMerge2 and AsyncCommutator components are used to multiplex Preamble 1 and
Preamble 2. The long preamble through LoadIFFTBuff802, FFT_Cx, and AddGuard form
OFDM symbols with guard interval.

 Long Preamble Generation

 FCH Structure

As specified in Section 8.3.4.1 Draft IEEE 802.16d Std [1], the FCH contains downlink
frame prefix to specify the burst profile and length of downlink burst 1. Downlink frame
prefix fields are:

Rate_ID Defines the burst profile of the following burst. Encoding is specified in OFDM
Rate ID Encoding.
Length Number of OFDM symbols (PHY payload) in the burst immediately following
the FCH burst.
HCS An 8-bit header check sequence used to detect errors in the downlink frame
prefix.

 OFDM Rate ID Encoding

Rate_ID Modulation RS-CC Rate

0 QPSK 1/2

1 QPSK 3/4

2 16QAM 1/2

3 16QAM 3/4

4 64QAM 2/3

5 64QAM 3/4

6 - 15 Reserved

The basic content of the FCH symbol is the downlink frame prefix implemented in sub_FCH
(sub_FCH FCH Structure). In the FCH, key parameters RateID and Length are included in
the header. The HCS generation can be modeled by a CRC check, where the transmitter

Advanced Design System 2011.01 - Numeric Components

40

takes the Rate_ID and Length bytes as the input of the CRC encoder and outputs the HCS
code.

As can be seen in Scrambling, Channel Coding, and Mapping for FCH Symbol, the FCH
symbol from sub_FCH will be scrambled by the scramble sequence from ReadFile and
LogicXOR2, channel coded through sub_RS_CC channel coder, mapped by Mapper, then
ready for framing the WMAN signal. (Scrambler, RS-CC channel coding, and mapping were
discussed in the section Basic Components.)

 sub_FCH FCH Structure

 Scrambling, Channel Coding, and Mapping for FCH Symbol

 Downlink Burst Generation

The sub_Data, shown in sub_Data Downlink Burst Generation, generates the WMAN
downlink burst (formed by MAC Header, MAC Msg, and Padding). The input data stream to
the modulation is selected as random data with a specific data length. In Scrambling,

Advanced Design System 2011.01 - Numeric Components

41

Channel Coding, and Mapping for Data Symbols, packed data is scrambled by ReadFile
and LogicXOR2, channel-coded through sub_RS_CC, mapped with Mapper, and ready for
framing the WMAN signal. (Scrambler, RS-CC channel coding, and mapping were
discussed in the section Basic Components.)

 sub_Data Downlink Burst Generation

 Scrambling, Channel Coding, and Mapping for Data Symbols

 OFDM Modulation

The WMAN physical layer is based on OFDM modulation.

Advanced Design System 2011.01 - Numeric Components

42

An OFDM symbol is made up of subcarriers, the number of which determines the FFT size
as illustrated in OFDM Symbol. WMAN subcarriers types include:

Data subcarriers for data transmission.
Pilot subcarriers for various estimation purposes.
Null subcarriers (no transmission at all) for guard band and DC subcarrier.

The guard band (illustrated in OFDM Symbol Time Structure) enables the signal to
naturally decay and create FFT brick wall shaping.

 OFDM Symbol

Inverse-Fourier-transforming creates the OFDM waveform; this time duration is referred
to as the useful symbol time T b. A copy of the last T g of the useful symbol period CP is

used to collect multipath while maintaining the orthogonality of the tones. OFDM Symbol
Time Structure illustrates this OFDM symbol structure in the time domain.

 OFDM Symbol Time Structure

OFDM Modulation shows OFDM modulation in ADS. Downlink data and FCH signal through
channel coding and mapping are multiplexed. MuxOFDMSym802 then multiplexes pilot
and data carriers to form WMAN OFDM symbols in the frequency domain. LoadIFFTBuff802
and FFT_Cx then perform an inverse-FFT to form the WMAN OFDM symbols in the time
domain. AddGuard adds a guard interval to complete the OFDM symbols.

 OFDM Modulation

Advanced Design System 2011.01 - Numeric Components

43

 Measurements

Measurements are provided for waveforms, spectrum, power, and constellation.

TimedSink models are directly used to display waveforms for preamble, FCH, medium
access control data, and whole framed signals.
SpectrumAnalyzerResBW is used to measure the spectrum for the WMAN signals.

Signal power is measured in the region that does not include signal idle. The total_pwr
expression in the data display window is used with two data display markers for specifying
region. For CCDF, WMAN downlink frame can be measured by using power_ccdf in the
data display window with two data display markers for specifying the region to be
measured as shown in Examples.

For the WMAN constellation measurement, sub_WMAN_Constellation is used. As shown in
sub_WMAN_Constellation Constellation Measurement this design integrates RF
demodulation, OFDM demodulation, demultiplexing for Data and SIGNAL, and sinks for
displaying Data as well as Signal constellations. NumericSink Constellation_data displays
16QAM constellation for data and BPSK Constellation for the pilot; NumericSink
Constellation_sig displays FCH SIGNAL constellations.

Advanced Design System 2011.01 - Numeric Components

44

 sub_WMAN_Constellation Constellation Measurement

Advanced Design System 2011.01 - Numeric Components

45

 WMAN Design Example Descriptions
The WMAN_802_16d_wrk includes: Test_WMAN_CodedSignals for fully-coded signal
generation; Test_WMAN_RFSource for transmitter test; and Test_WMAN_ESG for
downloading a WMAN signal to an ESG. These designs are described in the following
sections. Simulation will generate single bursts of data, formatted for downlink in the
mandatory coding schemes. (The optional FEC features are not supported.)

 Fully-Coded Signal Generation

Test_WMAN_CodedSignals demonstrates how to build an OFDM frame structure for the
WMAN frequency division duplex downlink (FDD DL) system in ADS; the schematic is
shown in Test_WMAN_CodedSignal Schematic.

The main components are provided at the subsystem level and include long preamble,
frame control header (FCH) and FDD DL data generation, OFDM modulation, multiplexing,
RF modulation, and measurements. Signals are fully coded by RS-CC encoding and framed
based on the 16d Standard.

An RF modulator for modulation of the fully-coded WMAN signal to the RF carrier
frequency is followed by an RFGain power amplifier as the DUT.

To show system performance in time as well as frequency domains, TimeSink and
SpectrumAnalyzerResBW are used for both input and output of the DUT.

In the time domain, the amplitude of the framed WMAN signal is displayed first, total
power and CCDF are then measured using total_pwr and power_ccdf expressions;
simulation results are shown in Power and CCDF Measurement Results.
In the frequency domain, WMAN signal spectrum is measured for both input and
output of the DUT; simulation results are shown in Spectrum Measurement Results.

 Test_WMAN_CodedSignal Schematic

Advanced Design System 2011.01 - Numeric Components

46

 Power and CCDF Measurement Results

Advanced Design System 2011.01 - Numeric Components

47

 Spectrum Measurement Results

Default settings for basic signal information are listed below.

 Default Settings for WMAN Measurements

Advanced Design System 2011.01 - Numeric Components

48

Parameter Descriptions Default Setting

FSource Source carrier frequency 2.4 GHz

SourceR Source resistor 50 Ohm

Source Power Source power 20 dBm

Bandwidth System bandwidth 20m MHz

RateID Rate ID 2 16QAM, coded block size 48, uncoded block size 96, overall
coding rate 1/2

Data Length Data length in bytes 256

FFT size FFT size 512

DL Frame Time FDD Downlink frame time 92 us

Guard Interval Guard interval 1/4

Idle Interval Idle interval time 2 us

Data Sub-
carriers

Number of subcarriers for
data

200

Pilot Carriers Number of subcarriers for
pilot

8

Measured
Frames

Number of frames
measured

2

 Transmission Test

Test_WMAN_RFSource tests WMAN transmission; the schematic is shown in
Test_WMAN_RFSource Schematic.

 Test_WMAN_RFSource Schematic

The top level of this schematic consists of: WMAN source (sub_WMAN_802_16dRF); DUT
(CktAmp with EnvOutSelector); and measurements.

Advanced Design System 2011.01 - Numeric Components

49

sub_WMAN_802_16dRF is a local subnetwork component to generate a partially-coded
WMAN signal. By pushing into this subnetwork, we can see the design is the same as the
signal source in Test_WMAN_CodedSignal Schematic, except there is no FEC in
sub_WMAN_802_16dRF. For the transmission test, basic performance including spectrum,
power, CCDF, and constellation measurements will produce the same results with or
without FEC.

Key parameters defined in Signal_Generation_Vars and Measurement_Vars, provide an
easy way to configure the transmitter at the top-level design. The DUT can be replaced by
customer's DUT that will then be measured for performance.

The RF Envelope measurement is used to show the time envelope and spectrum of each
field in the 802.16d RF signal frame: preambles, FCH and DL Data fields. Two signals are
tested, the RF source signal at the input of the RF DUT and the Meas signal at the output
of the RF DUT. RF envelope time and spectrum measurements are implemented for each
signal. Results are shown below.

 Time Envelope and Spectrum of Each Frame Field

SpectrumAnalyzerResBW is used to measure the spectrum for the WMAN signals. Results
are shown below.

Advanced Design System 2011.01 - Numeric Components

50

 Spectrum Measurement Results

Power and CCDF measurement results are shown in Power and CCDF Measurement
Results. The downlink burst can be measured by using the power_ccdf measurement
expression based on the DUT input and output waveforms.

 Power and CCDF Measurement Results

Advanced Design System 2011.01 - Numeric Components

51

Constellation measurement results shown below include BPSK constellation for pilot signal,
QPSK for FCH, and 16QAM for medium access control data.

 Constellation Measurement Results

Advanced Design System 2011.01 - Numeric Components

52

 Signal Downloading to ESGc

Test_WMAN_ESG generates and downloads a WMAN signal to an Agilent ESG signal
generator; the schematic is shown below.

 Test_WMAN_ESG Schematic

The RF signal generated by sub_WMAN_802_16dRF is converted to I and Q data through
CxToRect and sent to CM_ESG_E4438C_Sink to download data to the ESGc (E4438C). The
downloaded framed signal can drive ARB signal generator in ESGc for generating a test
signal for WMAN system, sub-system, and component tests.

A WMAN power amplifier DUT can be tested using this WMAN signal. Basic system
performances can be measured using Agilent 89600 Series Vector Signal Analyzer (VSA)
for spectrum as well as waveforms.

 Key Parameters

Each design in WMAN_802_16d_TX_wrk contains VAR blocks for ease of setting key
parameters. Parameter settings are described here.

Signal_Generation_Vars:

FSource specifies RF carrier frequency.
SourcePower specifies source output power in dBm or W.
BandOption specifies system bandwidth 1.75, 3.5, 7, 14, or 28 MHz; values are
BandOption=0, 1, 2, 3, 4, respectively. Other bandwidths are not supported. If
bandwidth < 0, set BandOption=0; if bandwidth >4, set BandOption=4.
Rate_ID specifies data modulation and channel coding types. Channel Coding Rates
lists RateID parameters of 802.16d associate with coding rate per modulation. For

Advanced Design System 2011.01 - Numeric Components

53

example for RateID=2, modulation type is specified as 16QAM and overall coding rate
is 1/2.
DataLength is used to set the number of data bytes in a frame (or burst). There are 8
bits per byte.
OversamplingOption sets the oversampling ratio of 802.16d RF signal source. Options
from 0 to 4 result in oversampling ratio 1, 2, 4, 8, 16 where oversampling ratio = 2
OversamplingOption . If oversampling ratio < 0, set OversamplingOption=0; if
oversampling ratio >4, set OversamplingOption=4. If the oversampling ratio = 2 2 =
4 and the simulation RF bandwidth is larger than the system bandwidth by a factor of
4 (e.g. for Bandwidth=14 MHz, the simulation RF bandwidth = 14 MHz × 4 = 16
MHz). The FFT size is determined by OversamplingOption. FFTsize=256 × 2
OversamplingOption . When OversamplingOption=0, 1,2,3,4,
FFTsize=256,512,1024,2048 and 4096.
IdleInterval specifies the idle interval between two consecutive frames when
generating an 802.16d signal source.
GuardInterval is used to set cyclic prefix in an OFDM symbol. The value range of
GuardInterval is [0.0,1.0]. The cyclic prefix is a fractional ratio of the IFFT length. In
802.16d, GuardInterval=1/32, 1/16, 1/8, 1/4 of the useful OFDM symbol time.

Measurement_Vars (Test_WMAN_RFSouce and Test_WMAN_CodedSignals)

FMeasure specifies the carrier frequency for the measurement.
Carriers specifies the number of subcarriers for an OFDM signal.
MeasFrames specifies the number of frames for measuring the Constellation.

ESG_Setting_Vars (Test_WMAN_ESG)

NumberOfSubFrames specifies the number of frames measured.
SubFrameTime specifies the signal frame time.
Stop specifies the signal stop time to be sent to the ESG.

Advanced Design System 2011.01 - Numeric Components

54

 References
Draft IEEE Standard for Metropolitan Area Networks IEEE P802.16-REVd/D2-2003,1.
Dec, 2003.

Advanced Design System 2011.01 - Numeric Components

55

 Numeric Advanced Comm Components
AddGuard (numeric)
ConvolutionalCoder (numeric)
CRC Coder (numeric)
CRC Decoder (numeric)
Deinterleaver802D (numeric)
Demapper (numeric)
Interleaver802 (numeric)
LoadIFFTBuff802 (numeric)
Mapper (numeric)
MuxOFDMSym802 (numeric)
RMSE (numeric)
ViterbiDecoder (numeric)

Numeric Advanced Communications components provide functions for simulation of
advanced communication systems based on the latest communication technologies
including wireless metropolitan access networks (WMAN), wireless local access networks
(WLAN), and wireless personal access networks (WPAN).

The MuxOFDMSym802, LoadIFFTBuff802, and AddGuard components provide orthogonal
frequency division multiplexing (OFDM) modulation. These components can be used for
OFDM modulation based on IEEE.802.11a/g, IEEE 802.153a, and IEEE 802.16d standards.

The Mapper and Demapper components provide basic modulation/demodulation and
mapping/demapping types BPSK, QPSK, 8PSK, 16QAM, 64QAM, 128QAM, and 256QAM.

The ConvolutionalCoder and ViterbiDecoder components provide convolutional encoding
and decoding.

The CRC_Coder and CRC_Decoder components provide code error checking.

The Interleaver802 and Deinterleaver802 components provide interleaving/deinterleaving
functionality based on IEEE 802 standards.

The RMSE component provides EVM calculations for designers who want to create subnet
measurements.

ADS examples (accessed from the ADS Main window: File > Open > Example > Com_Sys
> WMAN_802_16d_TX_wrk) demonstrate the use of these components for simulation as
well as WLAN and WMAN system testing. WMAN Example Designs (numeric) discusses
designs in this workspace.

Advanced Design System 2011.01 - Numeric Components

56

 AddGuard

Description: Guard insertion of OFDM symbol
Library: Numeric, Advanced Comm
Class: SDFAddGuard

 Parameters

Name Description Default Unit Type Range

IFFTSize IFFT size 64 int [1, ∞)

PreGuard Pre-guard length 16 int [0:IFFTSize]

PostGuard Post-guard length 0 int [0:IFFTSize]

Intersection Guard intersection length 0 int [0:IFFTSize]

 Pin Inputs

Pin Name Description Signal Type

1 In Transmitted signal after IFFT complex

2 Window Window function real

 Pin Outputs

Pin Name Description Signal Type

3 Out OFDM output data complex

 Notes/Equations

This component is used to add a guard interval to IFFT signals, which forms an OFDM1.
symbol. Pre- and post-guard intervals are implemented; all OFDM systems are
supported.
IFFTSize specifies the input IFFT signal length.2.
PreGuard specifies the pre-guard length; PostGuard specifies the post-guard length.
If PreGuard = 0, there is no pre-guard; if PostGuard = 0, there is no post-guard.
Intersection specifies the intersect length of two consecutive OFDM symbols. If
Intersection = 0, there is no intersect between symbols. To protect the IFFT signals,
Intersection cannot exceed PreGuard + PostGuard.
IEEE 802 series (802.11a, 802.11g, 802.15.3a, 802.16a, 802.16d) and DVB-T
standards do not include post-guard and intersection.
Each firing IFFTSize tokens are input from pin In.3.
PreGuard + IFFTSize + PostGuard tokens are input from pin Window.
PreGuard + IFFTSize + PostGuard-Intersection tokens are output.
Pin In is the IFFT signal input, pre-guard and post-guard are added accordingly,
which forms an OFDM symbol.
Pin Window is used to add a window function to the current OFDM symbol; length is
PreGuard + IFFTSize + PostGuard. Designers can specify the window values and

Advanced Design System 2011.01 - Numeric Components

57

input to this pin. The input of this pin can also be set as a constant value.
If an intersect does not exist, the OFDM symbol multiplies the window, then
outputs at pin Out.
If an intersect does exist, the OFDM symbol multiplies the window; results are
output after adding the intersecting parts of the previous OFDM symbol. Then
the intersecting parts of the OFDM symbol are stored as intersecting parts for
the next OFDM symbol.

An OFDM symbol is formed as described here.4.
Inverse-Fourier-transforming creates the IFFT signal; time duration is Tb. A copy of
the last time duration Tg of the useful symbol period is added before the IFFT signal
(this pre-guard is also called cyclic prefix). A copy of the last time duration Tc of the
useful symbol period is added after the IFFT signal (this post-guard is also called
cyclic postfix). The combined duration is referred to as symbol time Ts. OFDM Symbol
Time with Guard Interval illustrates this sequence.

 OFDM Symbol Time with Guard Interval

Intersection, PreGuard and PostGuard values form consecutive OFDM symbols.5.
Case 1: Intersection > PreGuard, Intersection > PostGuard

 Intersection > PreGuard, Intersection > PostGuard

For the IFFT signal of the second OFDM symbol, pre-guard, and post-guard are
added. Thus, the second OFDM symbol are formed and multiplied by window.
The points with Intersection length of the first and second OFDM symbols are
then summed and output first. The points of the second OFDM symbol with
length of PreGuard + IFFTSize + PostGuard-Intersection are then output. The
points with Intersection length of the second OFDM symbol are stored as
intersecting parts for the next OFDM symbol, as described next.
Let the input be {0, 1, 2, 3, 4, 5} and {6, 7, 8, 9, 10, 11}, window is 1,
IFFTSize = 6, PreGuard = 2, PostGuard = 2, Intersection = 3. With calculation
steps above, the output of the first and second OFDM symbol are {4, 5, 0, 1, 2,
3, 4} and {15, 11, 7, 7, 8, 9, 10}, respectively. Case 1: Calculation for Output
illustrates the calculation.

Advanced Design System 2011.01 - Numeric Components

58

 Case 1: Calculation for Output

Case 2: Intersection≤ PreGuard, Intersection≤ PostGuard

 Intersection ≤ PreGuard, Intersection ≤ PostGuard

his calculation is similar to Case 1. Let the input be {0, 1, 2, 3, 4, 5} and {6, 7,
8, 9, 10, 11}, window is 1, IFFTSize = 6, PreGuard = 3, PostGuard = 3,
Intersection = 2. The output of the first and second OFDM symbols are {3, 4, 5,
0, 1, 2, 3, 4, 5, 0} and {10, 12, 11, 6, 7, 8, 9, 10, 11, 6}, respectively. Case 2:
Calculation for Output illustrates the calculation.

 Case 2: Calculation for Output

 References

IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer," April, 2000.
ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);3.
Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.
ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and4.
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.
IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.155.
Task Group 3a," September 2003.
IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area6.

Advanced Design System 2011.01 - Numeric Components

59

networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.

Advanced Design System 2011.01 - Numeric Components

60

 ConvolutionalCoder

Description: Convolutional coder
Library: Numeric, Advanced Comm
Class: SDFConvolutionalCoder
Derived From: ConvolutionalCodeBase

 Parameters

Name Description Default Symbol Unit Type Range

CodingRate Coding rate: rate_1_2,
rate_1_3, rate_1_4, rate_1_5,
rate_1_6, rate_1_7, rate_1_8

rate_1_2 R enum

ConstraintLength Constraint length 7 K int [3, 14]

Polynomial Generator polynomial {0133,
0171}

 int
array

{2^(K-1)+2*n-1},
n=1,2,3,...2^(K-2).

ZeroTail Zero tail used to convert
convolutional code to block
code: NO, YES

NO enum

BitSequenceLength Length of bit squence not
including tail bits, valid when
ZeroTail=YES

88 N int [1,65535]

 Pin Inputs

Pin Name Description Signal Type

1 In input int

 Pin Outputs

Pin Name Description Signal Type

2 Out output int

 Notes/Equations

This component is used to convolute the input information sequence bit-by-bit.1.
Each firing, 1/CodingRate Out tokens are produced when one In token is consumed.
A convolutional code is generated by passing the information sequence to be
transmitted through a linear finite-state shift register. The shift register generally
consists of K(k-bit) stages and n linear algebraic function generators. Input data to
the encoder (assumed to be binary) is shifted into (and along) the shift register k bits
at a time. The number of output bits for each k-bit input sequence is n bits.
Therefore, the code rate is defined as R c = k /n, which is consistent with the code

rate definition for a block code. The K parameter is called the constraint length of the
convolutional code.

Advanced Design System 2011.01 - Numeric Components

61

CodingRate (R c) is the ratio of input bit (k) and output bits (n). ConvolutionalCoder2.

supports the 1/n coding rate only, which implements an R c = 1/n rate(n = 2, 3, 4, 5,

6, 7, 8) convolution for input data.
Convolutional codes with k /n (k > 1) are not supported by this component because:
coding and decoding will be more complex; and, even convolutional codes with a k /n
(k > 1) coding rate are used that are typically implemented by puncturing the
convolutional code with a 1/n coding rate.
ConstraintLength (K) represents shift register stages.3.
Polynomial is the generator function of the convolutional code. In general, the4.
generator matrix for a convolutional code is semi-infinite since the input sequence is
semi-infinite. As an alternative to specifying the generator matrix, a functionally
equivalent representation is used in which a set of n vectors is specified, one vector
for each n modulo-2 adder. A 1 in the ith position of the vector indicates that the
corresponding stage in the shift register is connected to the modulo-2 adder; 0 in a
given position indicates that no connection exists between that stage and the
modulo-2 adder.
For example, consider the binary convolutional encoder with constraint length K = 7, k
= 1, and n = 2; refer to Convolutional Code CC(2, 1 ,7). The connection for y0 is (1,
1, 0, 1, 1, 0, 1) from Input to Outputs; the connection for y1 is (1, 0, 1, 1, 1, 1, 1).
The generators for this code are more conveniently given in octal form as (0155,
0137). So, when k = 1, n generators, each of dimension K specify the encoder.

 Convolutional Code CC(2, 1 ,7)

ZeroTail specifies the character of encoder input sequence. If ZeroTail = YES, the5.
input sequence of encoder is divided into blocks. The length of the block is
BitSequenceLength. After each block, K − 1 zeros need to be appended as tail bits.
That is, the total block length of encoder is (BitSequenceLength + K − 1), referring to
Tail bits appending for ZeroTail = YES. The information will be used in the decoder to
obtain better performance.

 Tail bits appending for ZeroTail = YES

BitSequenceLength (valid only if ZeroTail = YES) is used to specify the information6.
bit length, which indicates the length of uncoded bits. This parameter can be used to

Advanced Design System 2011.01 - Numeric Components

62

set the same value for the encoder and the decoder.

 References

John G. Proakis, Digital Communications (Third edition), Publishing House of1.
Electronics Industry, Beijing, 1998.

Advanced Design System 2011.01 - Numeric Components

63

 CRC_Coder

Description: CRC generator
Library: Numeric, Advanced Comm
Class: SDFCRC_Coder
Derived From: CRC_Base

 Parameters

Name Description Default Unit Type Range

ParityPosition Parity bits position: Tail, Head Tail enum

ReverseData reverse the data sequence or not: NO, YES NO enum

ReverseParity reverse the parity bits or not: NO, YES NO enum

ComplementParity complement parity bits or not: NO, YES NO enum

MessageLength input message length 172 int [1, inf)

InitialState initial state of encoder 0x0 int [0, inf)

Polynomial generator polynomial 0x1f13 int [3, inf)

 Pin Inputs

Pin Name Description Signal Type

1 In input data int

 Pin Outputs

Pin Name Description Signal Type

2 Out output data int

 Notes/Equations

This component is used to add CRC bits to the input information.1.
Each firing, (MessageLength + CRCLength) tokens are produced when
MessageLength tokens are consumed. CRCLength is the length of CRC bits that is
determined by Polynomial, where 2 CRCLength ≤ Polynomial ≤ 2 CRCLength+1 .
CRC bits can be added to the head or the tail of the information bits by setting2.
ParityPosition. The order of CRC bits and the order of information bits can be
reversed by setting ReverseData and ReverseParity.
CRC Bit Calculation is an example of a CRC encoder in CDMA2000, where g(x) = x 63.

+ x 2 + x + 1, and Polynomial is hex 0x47. The CRC bits are added after the
information bits; the order of the CRC and information bits are not reversed.

Initially, all shift register elements are set to the InitialState and the switches
are set in the up position.
The register is clocked the number of times equal to MessageLength.
Switches are then set in the down position so that the output is a modulo-2

Advanced Design System 2011.01 - Numeric Components

64

addition with a 0 and the successive shift register inputs are 0.
The register is clocked an additional number of times equal to CRCLength and
the CRC bits are output.

 CRC Bit Calculation

 References

TIA/EIA/IS-2000.2 (PN-4428), Physical Layer Standard for cdma2000 Spread1.
Spectrum Systems, July 1999.

Advanced Design System 2011.01 - Numeric Components

65

 CRC_Decoder

Description: CRC Decoder
Library: Numeric, Advanced Comm
Class: SDFCRC_Decoder
Derived From: CRC_Base

 Parameters

Name Description Default Unit Type Range

ParityPosition Parity bits position: Tail, Head Tail enum

ReverseData reverse the data sequence or not: NO, YES NO enum

ReverseParity reverse the parity bits or not: NO, YES NO enum

ComplementParity complement parity bits or not: NO, YES NO enum

MessageLength input message length 172 int [1, inf)

InitialState initial state of encoder 0x0 int [0, inf)

Polynomial generator polynomial 0x1f13 int [3, inf)

 Pin Inputs

Pin Name Description Signal Type

1 In input data int

 Pin Outputs

Pin Name Description Signal Type

2 Out output data int

3 Parity Parity check int

 Notes/Equations

This component is used to check the CRC bits for CRC frame errors.1.
Each firing, (MessageLength + CRCLength) tokens are consumed when
MessageLength tokens and one parity token are produced. CRCLength is the CRC bit
length determined by Polynomial, where 2CRCLength ≤ Polynomial ≤ 2CRCLength+1.
The message part of the input data is sent to a CRC encoder that has the same2.
Polynomial value as the encoder (CRC_Coder). The CRC bits are then compared with
the CRC bits in the input data. If these are the same, the CRC check is passed.

Advanced Design System 2011.01 - Numeric Components

66

 Deinterleaver802D

Description: Deinterleave the input data
Library: Numeric, Advanced Comm
Class: SDFDeinterleaver802

 Parameters

Name Description Default Type Range

s modular factor of interleaving 1 int [1, ∞)

l divisor factor of interleaving 16 int [1, ∞)

NCBPS Number of coded bits per OFDM
symbol

48 int [1, ∞)

† The configuration of parameters s,l and NCBPS should be considered carefully or
unexpected result will occur.

 Pin Inputs

Pin Name Description Signal Type

1 In Input real

 Pin Outputs

Pin Name Description Signal Type

2 Out Output real

 Notes/Equations

Deinterleaver802 performs deinterleaving based on IEEE 802 standards. This1.
component deinterleaves (the inverse of Interleaver802) input bits with a block size
corresponding to the number of bits in a single OFDM symbol N CBPS.

Each firing, N CBPS tokens are consumed and N CBPS tokens are produced.

Deinterleaving is defined by a two-step permutation; j is used to denote the index of2.
the original received bit before the first permutation; i is used to denote the index
after the first (and before the second) permutation; k is used to denote the index
after the second permutation, before delivering the coded bits to the convolutional
(Viterbi) decoder.
The first permutation is defined by
i = s × floor(j/s) + (j + floor(l × j/ N CBPS)) mod s j = 0, 1, ... N CBPS - 1

The function floor (.) denotes the largest integer not exceeding the parameter
The second permutation is defined by

Advanced Design System 2011.01 - Numeric Components

67

k = l × i - (N CBPS - 1)floor(l × i/N CBPS) i = 0, 1, ... N CBPS - 1

In the equations, s is the modular factor and l is the divisor factor; these are variable
parameters and their values depend on which standard the model is used for.
If this model is used for IEEE 802.11 and HIPERLAN/2
s = max (N BPSC/2, 1), l = 16

where
N BPSC and N CBPS are determined by data rates given in IEEE 802.11 and

HIPERLAN/2 Rate Dependent Values.
If this model is used for IEEE 802.16
s = N BPSC /2, 1) l = 12

where N BPSC and N CBPS are determined by block sizes given in IEEE 802.16 Bit

Interleaver Block Sizes (NCBPS / NBPSC).

 IEEE 802.11 and HIPERLAN/2 Rate Dependent Values

Data Rate
(Mbps)

Modulation Coding
Rate (R)

Coded Bits per
Subcarrier
(NBPSC)

Coded Bits per
OFDM Symbol
(NCBPS)

Data Bits per OFDM
Symbol (NDBPS)

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 (IEEE
802.11a)

16QAM 1/2 4 192 96

27
(HIPERLAN/2)

16QAM 9/16 4 192 108

36 16QAM 3/4 4 192 144

48 (IEEE
802.11a)

64QAM 2/3 6 288 192

54 64QAM 3/4 6 288 216

 IEEE 802.16 Bit Interleaver Block Sizes (N CBPS / N BPSC)

Modulation 16 Subchannels (Default) 8 Subchannels 4 Subchannels 2 Subchannels 1 Subchannel

QPSK 384/2 192/2 96/2 48/2 24/2

16QAM 768/4 384/4 192/4 96/4 48/4

64QAM 1152/6 576/6 288/6 144/6 72/6

 References

IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type2.

Advanced Design System 2011.01 - Numeric Components

68

2; Physical (PHY) layer," April, 2000.
IEEE P802.16-REVd/D2-2003," Part 16 Air Interface for Fixed Broadcast Wireless3.
Access Systems".

Advanced Design System 2011.01 - Numeric Components

69

 Demapper

Description: Demodulator for BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM, and
256QAM or demapping according to user defined table.
Library: Numeric, Advanced Comm
Class: SDFDemapper

 Parameters

Name Description Default Unit Type Range

ModType Modulation type: BPSK, QPSK, PSK8, QAM16, QAM32,
QAM64, QAM128, QAM256, User_Defined

QPSK enum

MappingTable Constellation table complex
array

 Pin Inputs

Pin Name Description Signal Type

1 In input symbol sequence complex

 Pin Outputs

Pin Name Description Signal Type

2 Out output bit sequence int

 Notes/Equations

This component is used for BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM1.
and 256QAM symbol demodulation or for demapping bits according to the mapping
table.
The input signal is assumed to be modulated using the Mapper component. For QAM2.
modulations, the input signal amplitude must be normalized before input to the
model according to the constellations.
Each firing, when one In token is consumed:

1 Out token is produced for BPSK
2 Out tokens are produced for QPSK
3 Out tokens are produced for 8PSK
4 Out tokens are produced for 16QAM
5 Out tokens are produced for 32QAM
6 Out tokens are produced for 64QAM
7 Out tokens are produced for 128QAM
8 Out tokens are produced for 256QAM
For the user-defined mapping table, assuming the size of the array is A, log2(A)
Out tokens are produced when one In token is consumed.

For BPSK, bit 0 is mapped to 1 and bit 1 is mapped to −1.

Advanced Design System 2011.01 - Numeric Components

70

3.
The QPSK constellation is illustrated in QPSK Modulation Constellation. The 8PSK4.
constellation is illustrated in 8PSK Modulation Constellation.

 QPSK Modulation Constellation

 8PSK Modulation Constellation

For 16QAM, 32QAM, 64QAM, 128QAM and 256QAM, the constellation points in5.
quadrant 1 are converted to quadrants 2, 3 and 4 by changing the two most
significant bits (Ik and Qk) and by rotating the q least significant bits according to
Conversion of Constellation Points.
Constellation diagrams are illustrated in 16 and 32QAM Constellations through
256QAM Constellation.
For user-defined mapping, the input binary bit sequence is mapped to a constellation6.
point with the corresponding decimal index specified in the MappingTable parameter.

 Conversion of Constellation Points

Quadrant Most Significant Bit Least Significant Bit Rotation

1 00

2 10 π/2

3 11 π

4 01 3π/2

Advanced Design System 2011.01 - Numeric Components

71

 16 and 32QAM Constellations

 64QAM Constellation

 128QAM Constellation

Advanced Design System 2011.01 - Numeric Components

72

 256QAM Constellation

 References

EN 300 429, "Digital Video Broadcasting (DVB); Framing structure, channel coding1.
and modulation for cable systems," V1.2.1, 1998-04.

Advanced Design System 2011.01 - Numeric Components

73

 Interleaver802

Description: Interleave the input bits
Library: Numeric, Advanced Comm
Class: SDFInterleaver802

 Parameters

Name Description Default Type Range

s modular factor of interleaving 1 int [1, ∞)

l divisor factor of interleaving 16 int [1, ∞)

NCBPS Number of coded bits per OFDM
symbol

48 int [1, ∞)

† The configuration of parameters s,l and NCBPS should be considered carefully or
unexpected result will occur.

 Pin Inputs

Pin Name Description Signal Type

1 In Input int

 Pin Outputs

Pin Name Description Signal Type

2 Out Output int

 Notes/Equations

Interleaver802 performs interleaving based on IEEE 802 standards. Encoded data1.
bits are interleaved by this block interleaver with a block size corresponding to the
number of bits in a single OFDM symbol N CBPS.

Each firing, N CBPS tokens are consumed and N CBPS tokens are produced.

Interleaving is defined by a two-step permutation. The first permutation ensures that2.
adjacent coded bits are mapped onto nonadjacent subcarriers. The second
permutation ensures that adjacent coded bits are mapped alternately onto less and
more significant bits of the constellation, thereby avoiding long runs of low reliability
bits.
In the following, k denotes the index of the coded bit before the first permutation; i
denotes the index after the first and before the second permutation; j denotes the
index after the second permutation, just prior to modulation mapping.
The first permutation is defined by

Advanced Design System 2011.01 - Numeric Components

74

i = (N CBPS /l) (k mod l) + floor(k/l) k = 0, 1, ..., N CBPS - 1

The function floor (.) denotes the largest integer not exceeding the parameter.
The second permutation is defined by
j = s × floor(i/s) + (i + N CBPS - floor(l × i/N CBPS)) mod s i = 0, 1, ... N CBPS - 1

In the equations, s is the modular factor and l is the divisor factor ; these are
variable parameters and their values depend on which standard the model is used
for.
If this model is used in IEEE 802.11 and HIPERLAN/2,
s = max (N BPSC /2, 1), l = 16;

where N BPSC and N CBPS are determined by data rates given in IEEE 802.11 and

HIPERLAN/2 Rate-Dependent Values.
If this model is used in IEEE 802.16,
s = N BPSC /2, l = 12;

where N BPSC and N CBPS are determined by block sizes given in IEEE 802.16 Bit

Interleaver Block Sizes (NCBPS /NBPSC).

 IEEE 802.11 and HIPERLAN/2 Rate-Dependent Values

Data Rate
(Mbps)

Modulation Coding
Rate (R)

Coded Bits per
Subcarrier
(NBPSC)

Coded Bits per
OFDM Symbol
(NCBPS)

Data Bits per OFDM
Symbol (NDBPS)

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 (IEEE
802.11a)

16QAM 1/2 4 192 96

27
(HIPERLAN/2)

16QAM 9/16 4 192 108

36 16QAM 3/4 4 192 144

48 (IEEE
802.11a)

64QAM 2/3 6 288 192

54 64QAM 3/4 6 288 216

 IEEE 802.16 Bit Interleaver Block Sizes (N CBPS /N BPSC)

Modulation 16 Subchannels (Default) 8 Subchannels 4 Subchannels 2 Subchannels 1 Subchannel

QPSK 384/2 192/2 96/2 48/2 24/2

16QAM 768/4 384/4 192/4 96/4 48/4

64QAM 1152/6 576/6 288/6 144/6 72/6

 References

Advanced Design System 2011.01 - Numeric Components

75

IEEE Standard 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band, 1999.
ETSI TS 101 475 v1.1.1, Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer, April, 2000.
IEEE P802.16-REVd/D2-2003, Part 16 Air Interface for Fixed Broadcast Wireless3.
Access Systems.

Advanced Design System 2011.01 - Numeric Components

76

 LoadIFFTBuff802

Description: Subcarriers loader into IFFT buffer
Library: Numeric, Advanced Comm
Class: SDFLoadIFFTBuff802

 Parameters

Name Description Default Unit Type Range

Carriers Number of subcarriers per OFDM
symbol

52 int [1:8192]

DCCarrier DC carrier: OFF, ON OFF enum

DCPilotValue DC Pilot Value 1.333333+j*0.0 complex

FullSubcarriers Active all sub-carriers: NO, YES YES enum

SubcarrierList Sub-carrier list {-21, -7, 7, 21} int
array

Order IFFT points in 2^Order 7 int [(logCarriers/log2),
∞)

 Pin Inputs

Pin Name Description Signal Type

1 In Transmitted signal before IFFT complex

 Pin Outputs

Pin Name Description Signal Type

2 Out IFFT input signal, zero padded complex

 Notes/Equations

This component is used to load transmission data into the IFFT buffer. Each firing,1.
Carriers tokens are consumed and 2 Order tokens are generated. For example, if
Carriers = 52, Order = 7, 52 tokens are consumed and 128 tokens are generated.
Data loading is performed as follows.2.
Assume x(0), x(1), ... , x(N−1) are the inputs that generally represent active
subcarriers defined by designers, where N = Carriers. y(0), y(1), ... , y(M−1) are the
outputs, M = 2 Order.
when N is even

Advanced Design System 2011.01 - Numeric Components

77

when N is odd

For example, if Order = 4 and Carriers = 7, the input carriers are x(0), x(1), x(2),
x(3),x(4),x(5),x(6), and the output carrier sequence would be:
0 , x(3) , x(4) , x(5) , x(6) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , x(0) , x(1) , x(2)
which will be loaded into the IFFT model for the IFFT transformation.
DCCarrier and DCPilotValue specify whether DC carrier is used; if DCCarrier = ON,3.
the DC carrier value is set by DCPilotValue.
In the example provided in note 2, DCCarrier = OFF.
While DCCarrier = ON and DCPilotValue = 4/3, the output carriers sequence would
be:
4/3, x(3), x(4), x(5), x(6), 0, 0, 0, 0, 0, 0, 0, 0, x(0), x(1), x(2)
in which the first carrier is 4/3 instead of 0.
If FullSubcarriers = YES, all input carriers will be used. If FullSubcarriers = NO, some4.
of the input carriers will be used; SubcarrierList specifies which input carriers will be
used.
SubcarrierList (valid when FullSubcarriers = NO) specifies the positions of the input5.
carriers to be used as active subcarriers (all subcarriers are 0 except those carriers
specified).
Assume x(0), x(1), ... , x(N−1) are the input signals that generally represent active
subcarriers defined by designers, where N = Carriers. y(0), y(1), ... , y(M−1) are the
output of the model M = 2 Order. The corresponding indices of x(0), x(1), ... , x(N−1)
are {int(−Carriers/2), int(−Carriers/2) + 1, ... , −1, 1, ... , int(Carriers/2)−1,
int(Carriers/2)}.
The active subcarrier loading procedure is performed as follows: assume index is an
element of {int(−Carriers/2), int(−Carriers/2) + 1, ... , −1, 1, ... , int(Carriers/2)−1,
int(Carriers/2)}:
when N is even

when N is odd

Advanced Design System 2011.01 - Numeric Components

78

For example, SubcarrierList = {−2, −1, 2, 3}, and input carriers are x(0), x(1), x(2),
x(3), x(4), x(5), x(6). Indices of the input carriers are −3, −2, −1, 1, 2, 3, 4.
Elements in SubcarrierList must be integer and in (−Carriers/2, Carriers/2), in which
Carriers is the number of carriers of input, here, it is 7 and index should be in [−3,
3]. In this case, the carrier with index is −2, −1, 2, 3 is used, these are x(1), x(2),
x(4), x(5). The output subcarriers are then:
4/3, 0, x(4), x(5), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x(1), x(2).

 References

IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer," April, 2000.
ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);3.
Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.
ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and4.
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.
IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.155.
Task Group 3a," September 2003.
IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area6.
networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.

Advanced Design System 2011.01 - Numeric Components

79

 Mapper

Description: Modulator for BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM, and
256QAM or mapping according to user defined table.
Library: Numeric, Advanced Comm
Class: SDFMapper

 Parameters

Name Description Default Unit Type Range

ModType Modulation type: BPSK, QPSK, PSK8, QAM16, QAM32,
QAM64, QAM128, QAM256, User_Defined

QPSK enum

MappingTable Constellation table complex
array

 Pin Inputs

Pin Name Description Signal Type

1 In input bit sequence int

 Pin Outputs

Pin Name Description Signal Type

2 Out output symbol sequence complex

 Notes/Equations

The Mapper is a generic element performing a Mapping/Modulation for an input bit1.
sequence. When ModType is specified to BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-
QAM, 128-QAM or 256-QAM, the input bit sequence will be mapped/modulated to
BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-QAM, 128-QAM or 256-QAM symbols as
described in the section 9 of [1], in which Constellations have been defined in figure
7-8 of [1]. For each Mapped/Modulated symbols, two most significant bits (MSB) are
deferential encoded and least significant bits are rotated based on the specification in
Conversion of Constellation Points. In this case, the Mapper just gives the exact same
Mapping/Modulation as what shown in Figure 7-8 of [1]. When ModType is specified
to User_Defined, users can customize the Constellation by putting their own symbols
in the MappingTable.
This component is used to generate BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM,2.
128QAM and 256QAM modulation symbols or bit mapping according to the mapping
table.
Each firing, one Out token is produced when:

1 In token is consumed for BPSK
2 In tokens are consumed for QPSK
3 In tokens are consumed for 8PSK
4 In tokens are consumed for 16QAM

Advanced Design System 2011.01 - Numeric Components

80

5 In tokens are consumed for 32QAM
6 In tokens are consumed for 64QAM
7 In tokens are consumed for 128QAM
8 In tokens are consumed for 256QAM
For user-defined mapping table, assuming the size of the array is A, one Out
token is produced when log2(A) In tokens are consumed. For more than one
input token the input sequence is LSB first and MSB last.

For BPSK, bit 0 is mapped to 1; bit 1 is mapped to −1.3.
For QPSK, the constellation diagram is illustrated in QPSK Constellation.4.
For 8PSK, the constellation diagram is given in 8PSK Constellation.5.
For 16QAM, 32QAM, 64QAM, 128QAM and 256QAM, the constellation points in6.
quadrant 1 are converted to quadrants 2, 3 and 4 by changing the two most
significant bits (Ik and Qk) and by rotating the q least significant bits according to
Conversion of Constellation Points.

 Conversion of Constellation Points

Quadrant Most Significant Bit Least Significant Bit Rotation

1 00

2 10 π/2

3 11 π

4 01 3π/2

16QAM, 32QAM, 64QAM, 128QAM and 256QAM constellation diagrams are illustrated
in 16 and 32QAM Constellation through 256QAM Constellation.
For user-defined mapping, the input binary bit sequence is mapped to a constellation7.
point with corresponding decimal index in the MappingTable.

 QPSK Constellation

 8PSK Constellation

Advanced Design System 2011.01 - Numeric Components

81

 16 and 32QAM Constellation

 64QAM Constellation

Advanced Design System 2011.01 - Numeric Components

82

 128QAM Constellation

 256QAM Constellation

 References

EN 300 429, "Digital Video Broadcasting (DVB); Framing structure, channel coding1.
and modulation for cable systems," V1.2.1, 1998-04.

Advanced Design System 2011.01 - Numeric Components

83

 MuxOFDMSym802

Description: generic OFDM symbol multiplexer
Library: Numeric, Advanced Comm
Class: SDFMuxOFDMSym802

 Parameters

Name Description Default Unit Type Range

Carriers Number of subcarriers per OFDM
symbol

52 int [1:8192]

DataCarriers Number of data subcarriers per OFDM
symbol

48 int [1:8192]

PilotPosition Standard pilots positions {-21, -7, 7, 21} int array

PilotValue Standard pilots values {1.0, 1.0, 1.0, -
1.0}

 complex
array

GuardCarrierPosition Guard carriers positions int array

GuardCarrierValue Guard carriers values complex
array

 Pin Inputs

Pin Name Description Signal Type

1 Data data subcarriers input complex

2 Pilot continual pilot value complex

 Pin Outputs

Pin Name Description Signal Type

3 Out OFDM symbol output complex

 Notes/Equations

This component is used to multiplex data and pilot subcarriers into the OFDM symbol1.
for IEEE 802 standards 802.11a, 802.11g, 802.15.3a, 802.16a, and 802.16d.

Note
OFDM symbols generally consist of continual pilots (CP) and scattered pilots (SP). Current IEEE 802
standards use CP only. Even though some DAB, DVB-T, and ISDB-T OFDM systems may use both CP
and SP, MuxOFDMSym802 supports CP only.

The basic OFDM symbol structure is introduced in the frequency domain. The symbol2.
(illustrated in OFDM Symbol) consists of subcarriers that determine the size of the
FFT. There are several subcarrier types:

Data subcarriers for data transmission
Pilot subcarriers for estimations

Advanced Design System 2011.01 - Numeric Components

84

Null subcarriers for no transmission, for guard bands and DC subcarrier.
Guard bands in most OFDM systems (DVB-T, ISDB-T, 802.11a, 802.11g,
802.16a, and 802.16d) are inserted zeros.
IEEE 802.15.3a has additional guard carriers defined between data subcarriers
and guard bands. The guard subcarriers can be used for various purposes,
including relaxing the specification on transmit and receive filters. The
magnitude level of the guard tones is not specified, so reduced power levels for
these subcarriers can be used. The all-zeros guard bands allow the signal to
naturally decay and create the FFT brick wall shaping.

 OFDM Symbol

This component multiplexes data and pilot subcarriers into one OFDM symbol
according to the positions of data and pilot subcarriers defined in the standards.
The null subcarriers (guard bands and DC subcarrier) are inserted into an OFDM
symbol by the LoadIFFTBuff802 component. (Both MuxOFDMSym802 and
LoadIFFTBuff802 components implement an OFDM symbol in the frequency
domain.)

MuxOFDMSym802 parameter settings enable designers to generate a variety of3.
OFDM symbol formats, in accordance with IEEE standards or not.
Carriers specifies the number of active subcarriers (data subcarriers, pilot subcarriers
and guard subcarriers) in one OFDM symbol.

Note
Carriers = DataCarriers + PilotPosition + GuardCarrierPosition.

DataCarriers specifies the number of data subcarriers in one OFDM symbol.
PilotPosition specifies continual pilot positions; PilotPosition is the number of pilot
subcarriers in one OFDM symbol.
PilotValue specifies values for continual pilot positions.
GuardCarrierPosition specifies guard carriers positions (default = NULL);
GuardCarrierPosition is the number of guard carrier subcarriers in one OFDM symbol.
GuardCarrierValue specifies values for guard carrier positions (default = NULL).
Each firing, one Pilot token and DataCarriers tokens are consumed and Carriers4.
tokens are output.
The complex Data input signal is directly multiplexed into the OFDM symbol.
The continual pilots are multiplexed into OFDM symbols as follows:
p k is the input in Pilot pin for kth OFDM symbol (or kth firing)

a 0, a 1, ... , a n are n+1 pilot values defined by PilotValue

The actual pilot values of kth OFDM symbol are p k × a 0, p k × a 1, ... , p k × a n

. The continual pilot subcarrier values are multiplexed into the OFDM symbol
according to PilotPosition.
The guard carriers are multiplexed into the OFDM symbol like continual pilot as
follows:
b 0, b 1, ... , b are m+1 guard carriers values specified by GuardCarrierValue.

Advanced Design System 2011.01 - Numeric Components

85

m

The actual guard carrier values of kth OFDM symbol are p k × b 0, p k × b 1, ... , p k

× b m.

These guard carrier subcarriers values are multiplexed into the OFDM symbol
according to GuardCarrierPosition.
The MuxOFDMSym802 output includes all active data, pilot, and guard carriers5.
subcarriers indexed in the frequency domain:
[−(Carriers)/2, −(Carriers)/2 + 1, ... , −1, 1, ... , (Carriers + 1)/2 −1, (Carriers +
1)/2]
LoadIFFTBuff802 loads these output signals from MuxOFDMSym802 into the IFFT
buffer and inserts zeros into the NULL and DC subcarriers. IFFT Input and Output
(802.11a Specification) illustrates the 802.11a IFFT input and output. An OFDM
symbol is input in the frequency domain after LoadIFFTBuff802; an OFDM symbol is
output in the time domain after IFFT.

 IFFT Input and Output (802.11a Specification)

 References

IEEE Standard 802.11a-1999, "Part 11: Wireless LAN Medium Access Control (MAC)1.
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band," 1999.
ETSI TS 101 475 v1.1.1, "Broadband Radio Access Networks (BRAN); HIPERLAN Type2.
2; Physical (PHY) layer," April, 2000.
ARIB-JAPAN, Terrestrial Integrated Services Digital Broadcasting (ISDB-T);3.
Specification of Channel Coding, Frame Structure and Modulation, Sept.1998.
ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and4.
modulation for digital terrestrial television. EN300 744 v1.2.1, European
Telecommunication Standard, July 1999.
IEEE P802.15-03/268r1, "Multi-band OFDM Physical Layer Proposal for IEEE 802.155.
Task Group 3a," September 2003.
IEEE P802.16-REVd/D2-2003, "Draft IEEE Standard for Local and metropolitan area6.

Advanced Design System 2011.01 - Numeric Components

86

networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems," 2003.

Advanced Design System 2011.01 - Numeric Components

87

 RMSE

Description: Root Mean Square Error
Library: Numeric, Advanced Comm
Class: SDFRMSE

 Parameters

Name Description Default Unit Type Range

StartFrame Start frame 0 int [0, ∞)

FramesToAverage Number of frames for the average RMSE 1 int [1, ∞)

FrameLength Frame length 4096 int [1, ∞)

DisplayOption Display option: RMS, dB RMS enum

 Pin Inputs

Pin Name Description Signal Type

1 InRef Input reference signal complex

2 InTest Input test signal complex

 Notes/Equations

This component is used to calculate the root mean square error of the input data.1.
Each firing, one token is consumed; after (FramesToAverage +
StartFrame) × FrameLength tokens are consumed, the RMSE of the input signal is
sinked.
The root mean square error is calculated according to the equation2.

where,
N f is the number of frames to average

L f is the frame length

I 1(i, j), Q 1 (i, j) and I 2 (i, j), Q 2 (i, j) are the in-phase and quadrature parts,
respectively, of the input signals

Advanced Design System 2011.01 - Numeric Components

88

 ViterbiDecoder

Description: Viterbi decoder for convolutional code
Library: Numeric, Advanced Comm
Class: SDFViterbiDecoder

 Parameters

Name Description Default Symbol Unit Type Range

CodingRate Coding rate: rate_1_2,
rate_1_3, rate_1_4, rate_1_5,
rate_1_6, rate_1_7, rate_1_8

rate_1_2 R enum

ConstraintLength Constraint length 7 K int [3, 14]

Polynomial Generator polynomial {0133,
0171}

 int
array

{2^(K-1)+2*n-1},
n=1,2,3,...2^(K-2).

ZeroTail Zero tail used to convert
convolutional code to block
code: NO, YES

NO enum

BitSequenceLength Length of bit squence not
including tail bits, valid when
ZeroTail=YES

88 N int [1,65535]

MaxSurvivorLength Maximum length of survivor, in
bits

35 int [5*K, 20*K]

Polarity Mapping mode from NRZ to
logic signal: Negative to logic 1,
Negative to logic 0

Negative to
logic 1

 enum

InitialState Initial state of convolutional
encoder: Zero state, Non-zero
state

Zero state enum

IgnoreNumber Number of data points to be
ignored

0 int [0, 65535]

 Pin Inputs

Pin Name Description Signal Type

1 In input real

 Pin Outputs

Pin Name Description Signal Type

2 Out output int

 Notes/Equations

This component is used for convolutional code decoding with a Viterbi algorithm.1.
Generally, there are two ways to implement convolutional code in communications

Advanced Design System 2011.01 - Numeric Components

89

system: code a semi-infinite bit sequence length where the initial encoder state could
be zero- or non-zero with any final state; or, code block-by-block by appending zero
tails after bit blocks so that the initial and the final encoder states are both zero. The
ZeroTail parameter specifies this implementation; if ZeroTail = YES, then zero tails
must be appended before input to this component.
Each firing, if ZeroTail = YES, (N + K − 1) Out tokens are produced, when (N + K
− 1)/ R In tokens are consumed; If ZeroTail = NO, 1 Out token is produced for 1/ R
In tokens consumed.
For example, in CDMA access channel, CC(3, 1, 9) with zero tail is used in which the
convolutional code rate R is 1/3 and the bit sequence length is 88. CodingRate is set
to rate 1/3, ZeroTail = YES and BitSequenceLength = 88.Each firing, 96 Out tokens
are produced when 288 In tokens are consumed.
ViterbiDecoder supports the 1/ n coding rate only. Convolutional codes with k/ n (k
>1) are not supported by this component because: the coding and decoding will be
more complex (this is also the reason why convolutional codes with a k/n (k >1)
coding rate are seldom used in real communication systems); and, even
convolutional codes with a k/ n (k >1) coding rate are used that are typically
implemented by puncturing the convolutional code with a 1/ n coding rate.
Polynomial is the convolutional code generator function. The generator matrix for a2.
convolutional code is generally semi-infinite because the input sequence is semi-
infinite. As an alternative to specifying the generator matrix, a functionally equivalent
representation is used in which a set of n vectors is specified, one vector for each of
the n modulo-2 adder. 1 in the ith position of the vector indicates that the
corresponding stage in the shift register is connected to the modulo-2 adder; 0 in a
given position indicates that no connection exists between that stage and the
modulo-2 adder.
For example, consider the binary convolutional encoder with constraint length K = 7,
k = 1, and n = 2, illustrated in Convolutional Code CC(2,1,7). The connection for y0
is (1, 0, 1, 1, 0, 1, 1) from Outputs to Input, while the connection for y1 is (1, 1, 1,
1, 1, 0, 1). Generators for this code are conveniently given in octal form as (0133,
0175). So, when k=1, n generators (each of dimension K) are required to specify the
encoder.

 Convolutional Code CC(2,1,7)

ZeroTail is used to specify the encoder input sequence character. If ZeroTail = YES,3.
the encoder input sequence is divided into blocks; block length is N . After each
block, K−1 zeros are appended as tail bits. The total block length of the encoder is (N
+ K − 1), referring to Tail bits removal for ZeroTail = YES. In the decoder, known
information can be used to obtain better performance.

 Tail bits removal for ZeroTail = YES

Advanced Design System 2011.01 - Numeric Components

90

BitSequenceLength (valid only when ZeroTail = YES) is used to specify the4.
information bit length, which indicates the length of uncoded bits. This parameter can
be set to the same value in the encoder and the decoder.
MaxSurvivorLength is the maximum length of the survivor that is stored in memory.5.
The delay in decoding a long information sequence that has been convolutionally
encoded is usually too long for most practical applications; moreover, memory
required to store the entire length of surviving sequences is large and expensive. A
solution for this is to modify the Viterbi algorithm in such a way that results in a fixed
decoding delay without significantly affecting the optimal performance of the
algorithm.
The modification is to retain at any given time t only the most recent δ decoded
informations bits in each surviving sequence. As each new information bit is received,
a final decision is made on the bit received δ branches back in the trellis, by
comparing the metrics in the surviving sequences and determining in favor of the bit
in the sequence having the largest metric. If the δ chosen is sufficiently large, all
surviving sequences will contain the identical decoded bit δ branches back in time.
That is, with high probability, all surviving sequences at time t stem from the same
one as t−δ. Experimental simulation has determined that a delay δ ≥ 5 K results in a
negligible degradation in the performance relative to the optimum Viterbi algorithm.
Polarity is used to specify the mapping mode from bit (0, 1) to the NRZ signal level.6.
Generally, bit 0 is mapped to level 1 and bit 1 is mapped level −1. An alternative is
to map bit 0 to level −1 and bit 1 to level 1.
InitialState is used to specify the coded sequence character. If the initial state of7.
encoder is zero-state, the known information can be used to obtain better
performance. If the initial state is not known to be zero, InitialState must be set to a
non-zero state.
IgnoreNumber is used to specify how much data will be ignored by this component.8.
Delays in communications systems can be caused by devices or transmission. And,
the delay may be inserted between the encoder and decoder in the form of
meaningless data, so the information must be set in IgnoreNumber.

If ZeroTail = YES, the value of IgnoreNumber is n × (N + K − 1)/ R (n is an
integer and n ≥ 0), and no extra delay will be introduced because it is assumed
the sequence is frame synchronized before input to ViterbiDecoder.
If ZeroTail = NO, the delay is an integer number n ; this means the symbol
synchronization is achieved before ViterbiDecoder. If n / R is also an integer,
then the delay of output bit sequence will be n / R bits. Otherwise, the delay will
be the minimum integer larger than n / R.
Input sequence requirements are:
If ZeroTail = YES

Advanced Design System 2011.01 - Numeric Components

91

The input sequence must be frame synchronized; that is, IgnoreNumber must
be n × N / R (n is an integer and n ≥ 0) and the first valid data must be the
first symbol of the first codeword in that frame.
The input sequence must be encoded from blocks, each having K−1 zero tails so
that the initial state and final state are all zero-state.
If ZeroTail = NO
The input sequence must be bit synchronized; that is, the first valid data must
be the first symbol of a codeword.
If InitialState is set to Zero state, the first valid symbol must be encoded with
zero initial state.

The Viterbi algorithm is an optimal method of decoding convolutional codes. Optimal9.
decoding decisions cannot be made on a symbol-by-symbol basis; instead, the entire
received sequence must be compared with all possible transmitted sequences. The
number of possible transmitted sequences increases exponentially with time, so an
efficient method of comparing sequences is necessary.
The Viterbi algorithm is computationally efficient, but its complexity increases
exponentially with the constraint length of the code. The Viterbi decoder measures
how similar the received sequence is to a transmitted sequence by calculating a
number called path metric (path metric of a sequence is calculated by adding
numbers known as symbol metric, which is a measure of how close a received
symbol is to each of the possible transmitted symbols). The transmitted sequence
corresponding to the smallest path metric is declared to be the most likely sequence.
The Viterbi algorithm for a CC(n, k, K) code is described in the following paragraphs.
Branch Metric Calculation
The branch metric m (a)

j , at the J th instant of the α path through the trellis is

defined as the logarithm of the joint probability of the received n-bit symbol r j 1, r j

2 ... , r jn conditioned on the estimated transmitted n-bit symbol c j 1 (a) , c j 2 (a) ...

, c jn
(a) for the α path. That is,

If Rake receiver is regarded as a part of the channel, for the Viterbi decoder the
channel can be considered to be an AWGN channel. Therefore,

Path Metric Calculation
The path metric M (a) for the α path at the J th instant is the sum of the branch
metrics belonging to the α path from the first instant to the J th instant. Therefore,

Information Sequence Update
There are 2 k merging paths at each node in the trellis and the decoder selects from

Advanced Design System 2011.01 - Numeric Components

92

paths α1, α2, ... , α2k the one having the largest metric, namely:

This path is known as the survivor.
Decoder Output
When the two survivors have been determined at the J th instant, the decoder
outputs from memory the (J-L)th information symbol survivor with the largest
metric.
ViterbiDecoder Component Validation10.
BER Measurements lists BER measurements for a rate 1/2 code (g 0 = 171, g 1 =

133) and a memoryless additive white Gaussian channel. Simulations were made
with hard decision decoding (binary quantization) and soft decision decoding (no
quantization). Simulation results are listed along with results published in
QUALCOMM Technical Data Sheet Q0256; note that the published data and
simulation results agree.

 BER Measurements

Eb/No(dB) Hard Decision Soft Decision

Simulated BER QUALCOMM BER Simulated BER QUALCOMM BER(3 bits)

3.0 3.62e-04 8.00e-04

3.5 7.56e-05 2.00e-04

4.0 5.01e-03 6.50e-03 1.11e-05 3.50e-05

4.5 1.79e-03 1.80e-03 2.12e-06 7.00e-06

5.0 5.71e-04 5.50e-04

5.5 1.25e-04 9.00e-05

6.0 2.81e-05 4.00e-05

 References

S. Lin and D. J. Costello, Jr., Error Control Coding Fundamentals and Applications,1.
Prentice Hall, Englewood Cliffs NJ, 1983.
J. G. Proakis, Digital Communications (Third edition), Publishing House of Electronics2.
Industry, Beijing, 1998.

Advanced Design System 2011.01 - Numeric Components

93

 Numeric Communications Components
8b10bCoder (numeric)
8b10bDecoder (numeric)
64b66bCoder (numeric)
64b66bDecoder (numeric)
ADPCM Coder (numeric)
ADPCM Decoder (numeric)
ADPCM FromBits (numeric)
ADPCM ToBits (numeric)
AWGN Channel (numeric)
BlindDFE (numeric)
BlindFFE (numeric)
BlockPredictor (numeric)
CoderRS (numeric)
DecoderRS (numeric)
DeScrambler (numeric)
DeSpreader (numeric)
DFE (numeric)
FFE (numeric)
FreqPhase (numeric)
HilbertSplit (numeric)
InterleaveDeinterleave (numeric)
M PSK (numeric)
NoiseChannel (numeric)
NonlinearDistortion (numeric)
PAM2Rec (numeric)
PAM2Xmit (numeric)
PAM4Rec (numeric)
PAM4Xmit (numeric)
PCM BitCoder (numeric)
PCM BitDecoder (numeric)
PhaseShift (numeric)
PSK2Rec (numeric)
PSK2Xmit (numeric)
QAM4 (numeric)
QAM4Slicer (numeric)
QAM16 (numeric)
QAM16Decode (numeric)
QAM16Slicer (numeric)
QAM64 (numeric)
QAM64Decode (numeric)
QAM64Slicer (numeric)
RaisedCosine (numeric)
RaisedCosineCx (numeric)
RecSpread (numeric)
Scrambler (numeric)
Spread (numeric)
TelephoneChannel (numeric)
WalshCoder (numeric)
XmitSpread (numeric)

Advanced Design System 2011.01 - Numeric Components

94

The numeric communications components provide basic communication functions on
single data points or arrays of data that are integer, double precision floating point (real),
fixed-point (fixed), or complex values. Each component accepts a specific class of signal
and outputs a resultant signal.

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. These
components do not accept any matrix class of signal. The auto conversion from timed,
complex or floating-point (real) signals to a fixed signal uses a default bit width of 32 bits
with the minimum number of integer bits needed to represent the value. For example, the
auto conversion of the real value of 1.0 creates a fixed-point value with precision of 2.30,
and a value of 0.5 would create one of precision of 1.31. For signal conversion rules, refer
to Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Advanced Design System 2011.01 - Numeric Components

95

 8b10bCoder

Description: 8b/10b coder
Library: Numeric, Communications
Class: SDF8b10bCoder

 Pin Inputs

Pin Name Description Signal Type

1 Din bits to be coded int

2 Kin control of Din (encoded as data (Kin=0) or encoded as a special character (Kin=1) int

 Pin Outputs

Pin Name Description Signal Type

3 output coded bits int

 Notes/Equations

The 8B/10B transmission code is used to improve the transmission characteristics of1.
information. The encodings defined by the transmission code ensure that sufficient
transitions are present in the PHY bit stream to make clock recovery possible at the
receiver. Such encoding also greatly increases the likelihood of detecting any single
or multiple bit errors that may occur during transmission and reception of
information. In addition, some of the special code-groups of the transmission code
contain a distinct and easily recognizable bit pattern that assists a receiver in
achieving code-group alignment on the incoming PHY bit stream. The 8B/10B
transmission code has a high transition density, is a run-length-limited code, and is
dc-balanced. The transition density of the 8B/10B symbols ranges from 3 to 8
transitions per symbol.
8B/10B transmission code uses letter notation for describing the bits of an unencoded2.
information octet and a single control variable. Each bit of the unencoded information
octet contains either a binary zero or a binary one. A control variable, Z, has either
the value D or the value K. When the control variable associated with an unencoded
information octet contains the value D, the associated encoded code-group is
referred to as a data code-group. When the control variable associated with an
unencoded information octet contains the value K, the associated encoded code-
group is referred to as a special code-group.
The bit notation of A, B, C, D, E, F, G, H for an unencoded information octet is used
in the description of the 8B/10B transmission code. The bits A, B, C, D, E, F, G, H are
translated to bits a, b, c, d, e, i, f, g, h, j of 10-bit transmission code-groups. The
8B/10B encoder is illustrated in 8B/10B Encoder. Each valid code-group has been
given a name using the following convention: /Dx.y/ for the 256 valid data code-
groups, and /Kx.y/ for special control code-groups, where x is the decimal value of

Advanced Design System 2011.01 - Numeric Components

96

bits EDCBA, and y is the decimal value of bits HGF. For detailed information, refer to
Tables 36-1 and 36-2 in IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple
access with collision detection (CSMA/CD) access method and physical layer
specifications, Section 36.2.4.

 8B/10B Encoder

Each firing,3.
Eight tokens are consumed at pin Din, and one token is consumed at pin Kin
(control character). Ten tokens are produced at pin output.
All the bits are input and output serially.
The input at pin Kin is the control variable Z, in which 0 means the value D and
1 means the value K.
The input at pin Din is the unencoded information octet. The LSB bit (A) is input
first, while the MSB (H) is input last.
The output at pin output is the 10-bit transmission code-group. The LSB bit (a)
is output first, while the MSB (j) is output last.

 References

IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple access with collision1.
detection (CSMA/CD) access method and physical layer specifications, Section
36.2.4.

Advanced Design System 2011.01 - Numeric Components

97

 8b10bDecoder

Description: 8b/10b decoder
Library: Numeric, Communications
Class: SDF8b10bDecoder

 Parameters

Name Description Default Type

Delay number of 10-bit symbol
delay

0 int

 Pin Inputs

Pin Name Description Signal Type

1 input bits to be decoded int

 Pin Outputs

Pin Name Description Signal Type

2 output decoded data bits int

3 Kout decoded control bits int

 Notes/Equations

The 8B/10B decoder is the reverse procedure of 8B/10B encoder. It's illustrated in1.
8B/10B Decoder.

 8B/10B Decoder

Advanced Design System 2011.01 - Numeric Components

98

For more information on the 8B/10B Coder, refer to 8b10bCoder (numeric).
Parameter Description:2.
Delay specifies the number of 10-bit symbol delay. The decoder begins to work after
10*Delay input tokens.
Each firing,3.

Ten tokens are consumed at pin input. One token is produced at pin Kout
(control character), and eight tokens are produced at pin output.
All the bits are input and output serially.
The input at pin input is the 10-bit transmission code-group. The LSB bit (a) is
input first, while the MSB (j) is input last.
The output at pin Kout is the decoded control variable Z, in which 0 means the
value D and 1 means the value K.
The output at pin output is the decoded information octet. The LSB bit (A) is
output first, while the MSB (H) is output last.

 References

IEEE Std 802.3, 2000 Edition, Part 3: Carrier sense multiple access with collision1.
detection (CSMA/CD) access method and physical layer specifications, Section
36.2.4.

Advanced Design System 2011.01 - Numeric Components

99

 64b66bCoder

Description: 64b/66b coder
Library: Numeric, Communications
Class: SDF64b66bCoder

 Parameters

Name Description Default Type

Scrambler scramble or not: NO, YES NO enum

ScramblerInit initial state of scrambler {1,1,1,1,1,1,1,
1,1,1,1,1,1,1
,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1}

int
array

 Pin Inputs

Pin Name Description Signal Type

1 input data to be
coded

int

2 CtrlBits control bits int

 Pin Outputs

Pin Name Description Signal Type

3 output coded bits int

 Notes/Equations

The 64B/66B transmission code is used to improve the transmission characteristics of1.
information and to support transmission of control and data characters. The
encodings defined by the transmission code ensure that sufficient transitions are
present in the PHY bit stream to make clock recovery possible at the receiver. Such
encoding also greatly increases the likelihood of detecting any single or multiple bit
errors that may occur during transmission and reception of information. In addition,
the synchronization headers of the code enable the receiver to achieve block
alignment on the incoming PHY bit stream. The 64B/66B transmission code has a
high transition density and is a run-length-limited code.
64B/66B encodes 8 data octets or control characters into a block. Blocks containing2.
control characters also contain a block type field. Data octets are labeled D 0 to D 7.

Advanced Design System 2011.01 - Numeric Components

100

Control characters other than /O/, /S/ and /T/ are labeled C0 to C 7. The control

character for ordered_set is labeled as O 0 or O 4 since it is only valid on the first

octet of the XGMII. The control character for start is labeled as S 0 or S 4 for the

same reason. The control character for terminate is labeled as T 0 to T 7.

Two consecutive XGMII transfers provide eight characters that are encoded into one
66-bit transmission block. The subscript in the above labels indicates the position of
the character in the eight characters from the XGMII transfers.
Contents of block type fields, data octets and control characters are shown as
hexadecimal values. The LSB of the hexadecimal value represents the first
transmitted bit. For instance, the block type field 0x1e is sent from left to right as
01111000. The bits of a transmitted or received block are labeled TxB<65:0> and
RxB<65:0> respectively where TxB<0> and RxB<0> represent the first transmitted
bit. The value of the sync header is shown as a binary value. Binary values are shown
with the first transmitted bit (the LSB) on the left.
Blocks consist of 66 bits. The first two bits of a block are the synchronization header3.
(sync header). Blocks are either data blocks or control blocks. The sync header is 01
for data blocks and 10 for control blocks. Thus, there is always a transition between
the first two bits of a block. The remainder of the block contains the payload. The
payload is scrambled and the sync header bypasses the scrambler. Therefore, the
sync header is the only position in the block that always contains a transition. This
feature of the code is used to obtain block synchronization.
Data blocks contain eight data characters. Control blocks begin with an 8-bit block
type field that indicates the format of the remainder of the block. For control blocks
containing a Start or Terminate character, that character is implied by the block type
field. Other control characters are encoded in a 7-bit control code or a 4-bit O Code.
Each control block contains eight characters.
The format of the blocks is as shown in 64B/66B Encoder. In the figure, the column
labeled Input Data shows, in abbreviated form, the eight characters used to create
the 66-bit block. These characters are either data characters or control characters
and, when transferred across the XGMII interface, the corresponding TXC or RXC bit
is set accordingly. Within the Input Data column, D0 through D7 are data octets and
are transferred with the corresponding TXC or RXC bit set to zero. All other
characters are control octets and are transferred with the corresponding TXC or RXC
bit set to one. The single bit fields (thin rectangles with no label in the figure) are
sent as zero and ignored upon receipt.
Bits and field positions are shown with the least significant bit on the left.
Hexadecimal numbers are shown in normal hexadecimal. For example the block type
field 0x1e is sent as 01111000 representing bits 2 through 9 of the 66 bit block. The
least significant bit for each field is placed in the lowest numbered position of the
field.

 64B/66B Encoder

Advanced Design System 2011.01 - Numeric Components

101

Ordered sets are used to extend the ability to send control and status information4.
over the link such as remote fault and local fault status. Ordered sets consist of a
control character followed by three data characters. Ordered sets always begin on the
first octet of the XGMII. 10 Gigabit Ethernet uses one kind of ordered_set: the
sequence ordered_set. The sequence ordered_set control character is denoted /Q/.
An additional ordered_set, the signal ordered_set, has been reserved and it begins
with another control code. The 4-bit O field encodes the control code. See Table 49-1
in IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications, Amendment:
Media Access Control (MAC) Parameters, Physical Layers, and Management
Parameters for 10 Gb/s Operation, Section 49.2. for the mappings.
A block is invalid if any of the following conditions exists:5.
a) The sync field has a value of 00 or 11.
b) The block type field contains a reserved value.
c) Any control character contains a value not in Table 49-1.
d) Any O code contains a value not in Table 49-1.
e) The set of eight XGMII characters does not have a corresponding block format in
64B/66B Encoder.
If parameter Scrambler is set as NO, the payload of the block is not scrambled. If it is6.
set as YES, the payload of the block is scrambled with a self-synchronizing scrambler.
The scrambler shall produce the same result as the implementation shown in
Scrambler. This implements the scrambler polynomial: G(x) = 1 + x39 + x58. The
parameter ScramblerInit is the initial value of the scrambler according to Scrambler.
Note that, in this 58-element array parameter ScramblerInit , the first element is the
initial value in S0 while the 58th element is the initial value in S57. The scrambler is
run continuously on all payload bits. The sync header bits bypass the scrambler.

Advanced Design System 2011.01 - Numeric Components

102

 Scrambler

Each firing,7.
64 tokens are consumed at pin input, and 8 tokens are consumed at pin CtrlBits.
66 tokens are produced at pin output.
The input at pin input are 8 data octets or control characters. For each data
octet or control character, the LSB is input first.
Each token at pin CtrlBits indicates the type of corresponding octet at pin input.
0 indicates data octet while 1 indicates control character.
All the bits are input and output serially.

 References

IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision detection1.
(CSMA/CD) access method and physical layer specifications, Amendment: Media
Access Control (MAC) Parameters, Physical Layers, and Management Parameters for
10 Gb/s Operation, Section 49.2.

Advanced Design System 2011.01 - Numeric Components

103

 64b66bDecoder

Description: 64b/66b decoder
Library: Numeric, Communications
Class: SDF64b66bDecoder

 Parameters

Name Description Default Type

Scrambler scramble or not: NO, YES NO enum

ScramblerInit initial state of scrambler {1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1}

int
array

Delay number of 66-bit symbol delayed for descrambler 0 int

 Pin Inputs

Pin Name Description Signal Type

1 input bits to be decoded int

 Pin Outputs

Pin Name Description Signal Type

2 output decoded bits int

3 CtrlBits control bits int

 Notes/Equations

The 64B/66B decoder is the reverse procedure of the 64B/66B encoder. For more1.
information on the 64B/66B Coder, refer to 64b66bCoder (numeric).
Parameter Description:2.
If parameter Scrambler is set as NO, the payload of the block is not scrambled. If it is
set as YES, the payload of the block is scrambled with a self-synchronizing scrambler.
The scrambler shall produce the same result as the implementation shown in
Scrambler. This implements the scrambler polynomial: G(x) = 1 + x39 + x58. The
parameter ScramblerInit is the initial value of the scrambler according to Scrambler.
Note that, in this 58-element array parameter ScramblerInit, the first element is the
initial value in S0 while the 58th element is the initial value in S57. The scrambler is
run continuously on all payload bits. The sync header bits bypass the scrambler.

Advanced Design System 2011.01 - Numeric Components

104

 Scrambler

Parameter Delay specifies the number of 66-bit symbol delay. The decoder begins to
work after 66* Delay input tokens.
Each firing,3.

66 tokens are consumed at pin input. 64 tokens are produced at pin output, and
8 tokens are produced at pin CtrlBits (with each corresponding to 8 decoded
bits).
The output at pin output are 8 data octets or control characters. For each data
octet or control character, the LSB is input first.
Each token at pin CtrlBits indicates the type of corresponding output octet at pin
output. 0 indicates data octet while 1 indicates control character.
All the bits are input and output serially.

 References

IEEE Std 802.3ae-2002, Part 3: Carrier sense multiple access with collision detection1.
(CSMA/CD) access method and physical layer specifications, Amendment: Media
Access Control (MAC) Parameters, Physical Layers, and Management Parameters for
10 Gb/s Operation, Section 49.2.

Advanced Design System 2011.01 - Numeric Components

105

 ADPCM_Coder

Description: Adaptive Differential Pulse-Code Modulation Encoder
Library: Numeric, Communications
Class: SDFADPCM_Coder

 Parameters

Name Description Default Unit Type Range

StepSize Step size of adaptive LMS prediction filter 1.0e-12 real (∞, ∞)

InitialLMS_Taps initial taps of adaptive LMS prediction filter 1.0 0.0 [15] real array

Range range of PCM signal level 800 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input analog input signal real

 Pin Outputs

Pin Name Description Signal Type

2 d unquantized ADPCM prediction error signal real

3 u quantized ADPCM prediction error signal real

 Notes/Equations

ADPCM_Coder is an adaptive differential pulse-code modulation encoder that1.
quantizes to 4-bit (2 4 levels). The adaptive prediction is done with an LMS (least-
mean square) adaptive filter.
The number of taps in the InitialLMS_Taps parameter sets the order of the LMS filter.2.
The InitialLMS_Taps default value (1.0 0.0 [15]) specifies 16 taps; therefore, the
order of the prediction filter is also 16.
ADPCM_Coder works with ADPCM_Decoder and ADPCM_ToBits; the Range parameter3.
must be set to the same value in each ADPCM component used.
Also see: ADPCM_Decoder, ADPCM_FromBits, ADPCM_ToBits, and LMS.4.
For general information regarding numeric communications components, refer to5.
Numeric Communications Components (numeric).

Advanced Design System 2011.01 - Numeric Components

106

 ADPCM_Decoder

Description: Adaptive Differential Pulse-Code Modulation Decoder
Library: Numeric, Communications
Class: SDFADPCM_Decoder

 Parameters

Name Description Default Unit Type Range

StepSize step size of adaptive LMS prediction filter 1.0e-12 real (-∞, ∞)

InitialLMS_Taps initial taps of adaptive LMS prediction filter 1.0 0.0 [15] real array

 Pin Inputs

Pin Name Description Signal Type

1 input quantized ADPCM prediction error signal real

 Pin Outputs

Pin Name Description Signal Type

2 output decoded signal real

 Notes/Equations

ADPCM_Decoder is an adaptive differential pulse-code modulation decoder. The1.
adaptive prediction is done with an LMS (least-mean square) adaptive filter.
The number of taps in the InitialLMS_Taps parameter sets the order of the LMS filter.2.
The InitialLMS_Taps default value 1.0 0.0 [15] specifies 16 taps; therefore, the order
of the prediction filter is also 16.
The predicted error signal is internally limited to the range −12000 to +12000. This3.
prevents the LMS algorithm from overflowing the floating-point (real) range in the
event the algorithm becomes unstable. Instability will still be observable, however, as
the output will approach infinity.
ADPCM_Decoder works with ADPCM_Coder and ADPCM_FromBits.4.
Also see: ADPCM_Coder, ADPCM_FromBits, ADPCM_ToBits, and LMS.5.
For information regarding numeric communications component signals, refer to the6.
Numeric Communications Components (numeric).

Advanced Design System 2011.01 - Numeric Components

107

 ADPCM_FromBits

Description: Adaptive Differential Pulse-Code Modulation Error Signal Decoder
Library: Numeric, Communications
Class: SDFADPCM_FromBits

 Parameters

Name Description Default Unit Type Range

Range range of PCM signal level 800 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input 4-bit encoded ADPCM error signal int

 Pin Outputs

Pin Name Description Signal Type

2 output quantized ADPCM error signal real

 Notes/Equations

ADPCM_FromBits decodes a previously encoded quantized ADPCM error signal. For1.
each set of four input bits received, a single quantized ADPCM error signal value is
produced.
ADPCM_FromBits works with ADPCM_ToBits and ADPCM_Decoder; the Range2.
parameter must be set to the same value in each ADPCM component used.
Also see: ADPCM_Coder, ADPCM_Decoder, ADPCM_ToBits.3.
For information regarding numeric communications component signals, refer to4.
Numeric Communications Components (numeric).

Advanced Design System 2011.01 - Numeric Components

108

 ADPCM_ToBits

Description: 4-Bit Adaptive Differential Pulse-Code Modulation Error Signal Decoder
Library: Numeric, Communications
Class: SDFADPCM_ToBits

 Parameters

Name Description Default Unit Type Range

Range range of PCM signal level 800 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input quantized ADPCM error signal real

 Pin Outputs

Pin Name Description Signal Type

2 output 4-bit code for the received ADPCM error signal value int

 Notes/Equations

ADPCM_ToBits encodes a previously quantized ADPCM error signal into a set of 41.
bits. For each input value received, four 1-bit outputs are produced.
ADPCM_ToBits works with ADPCM_FromBits and ADPCM_Coder; the Range2.
parameter must be set to the same value in each ADPCM component used.
Also see: ADPCM_Coder, ADPCM_Decoder, ADPCM_FromBits.3.
For information regarding numeric communications component signals, refer to4.
Numeric Communications Components (numeric).

Advanced Design System 2011.01 - Numeric Components

109

 AWGN_Channel

Description: Additive White Gaussian Noise Channel
Library: Numeric, Communications
Class: SDFAWGN_Channel

 Parameters

Name Description Default Unit Type Range

FwdTaps forward FIR filter tap to model linear distortion 1 real array

FdbkTaps feedback FIR filter tap to model linear distortion 0 real array

NoisePwr variance of the additive white Gaussian noise 0.5 real [0.0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

AWGN_Channel simulates a channel with white Gaussian noise and optional linear1.
distortion. To simulate linear distortion, the input signal is filtered through an FIR
filter and fed back through a second FIR filter. White Gaussian noise with zero mean
and variance NoisePwr is then added to the signal. The default values of FwdTaps and
FdbkTaps cause the signal to be passed through without distortion.
AWGN_Channel can be represented as Y = X + G, where G is a zero mean Gaussian2.
random variable with variance σ 2 and X = x K, k = 0, 1, ... q − 1. For a given X, it

follows that Y is Gaussian with mean x K and variance σ 2. That is,

For any given input sequence, X i, i-1, 2 ... , n, there is a corresponding output

sequence Y i = X i + G i , i = 1, 2, ... n.

Also see: NoiseChannel.3.
For information regarding numeric communications component signals, refer to4.
Numeric Communications Components (numeric).

Advanced Design System 2011.01 - Numeric Components

110

 References

J. G. Proakis, Digital Communications, McGraw-Hill, 1989.1.

Advanced Design System 2011.01 - Numeric Components

111

 BlindDFE

Description: Blind decision feedback equalizer
Library: Numeric, Communications
Class: SDFBlindDFE

 Parameters

Name Description Default Type

NumFFtaps number of feed-forward taps 5 int

FFinitial feed-forward filter taps are initialized by users or not: NO, YES NO enum

FFtaps initial feed-forward filter taps (only valid when FFinitial is YES) {0, 0, 1,
0, 0}

real
array

NumFBtaps number of feedback filter taps 2 int

FBinitial feedback filter taps are initialized by users or not: NO, YES NO enum

FBtaps initial feedback filter taps (only valid when FBinitial is YES) {0, 0} real
array

EquAlgorithm adaptive algorithm: None, CMA, DD CMA enum

Fraction number of samples per symbol at input, range [1, 16]. Fraction=1:
symbol-spaced equalizer; Fraction=2~16: fractionally spaced equalizer

1 int

Alpha step size for tap adjustment 1e-4 real

SaveFFTapsFile filename in which to save final FF tap values string

SaveFBTapsFile filename in which to save final FB tap values string

 Pin Inputs

Pin Name Description Signal Type

1 input input signal before
equalizer

real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal after blind decision feedback equalizer real

 Notes/Equations

Time-dispersive channels can cause intersymbol interference (ISI). For example, in a1.
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is
a blind Decision Feedback Equalization (DFE), and it operates in blind equalization
algorithm whether the eyes are closed or opened.
In each firing, it consumes Fraction input tokens while produces one output token.2.

Advanced Design System 2011.01 - Numeric Components

112

Implementation:3.
A block diagram of the equalizer is shown in Block Diagram of the DFE. This equalizer
works in blind equalization modes. During start-up and tracking, this equalizer
operates in blind algorithm whether the eyes are opened or closed.

 Block Diagram of the DFE

In Block Diagram of the DFE, {x(k)} is the received sequence before equalizer,
{y(k)} is the equalized sequence, (C(0), C(1), ..., C(N-1)) is the taps of feed-forward
transversal filter, (B(1), B(2), ..., B(M)) is the taps of feedback filter. e(k) is the error
signal of the blind equalization algorithm, the decision signal

which is the output of the Slicer, α is the step size to adjust the equalizer taps. If
Fraction=1,

the feed-forward transversal filter is a linear equalizer. Otherwise

where Fraction is a parameter, and the feed-forward transversal filter is a Fractionally
Spaced Equalizer (FSE). N+M is the number of taps for this equalizer; N is parameter
NumFFtaps; M is parameter NumFBtaps; T is the sampling time.
Equalization Algorithm4.
The blind equalizer algorithm works well when the eyes closed. The adaptive
algorithm of CMA and DD are adopted. The difference between LMS algorithm and
the blind algorithm is only the error signal e(k). The error signal e(k) is also the
difference in all of the blind equalization algorithms.

Advanced Design System 2011.01 - Numeric Components

113

The error signal of CMA algorithm is as follows

where R2=1 in binary case.

is the decision signal. The error signal of DD algorithm is as follows:

where

The blind equalization algorithm is as follows:

α is parameter Alpha.
For blind equalizers, no reference tap is defined to specify the delay introduced by5.
the equalizer. A common way for determining the delay is to compare the equalizer
output with the source empirically after the equalizer has converged.
Parameter Details:6.

NumFFtaps specifies the number of feed-forward taps.
FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.
FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.
NumFBtaps specifies the number of feedback filter taps.
FBinitial indicates whether the feedback filter taps are initialized by users or not.
If users don't want to set FBtaps, FBinitial is selected as NO and the FBtaps are
generated in code automatically.
FBtaps specifies the initial value of feedback filter taps if FBinitial is YES.
EquAlgorithm selects the adaptive algorithm. If NONE is selected, it's used as a
non-adaptive equalizer.
Alpha specifies the step size for tap adjustment.
Fraction specifies the number of samples per symbol at input, range [1, 16].
SaveFFTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveFFTapsFile string is non-null, a file will be created with the
name given by that string, and the final tap values will be stored there after the
run has completed.
SaveFBTapsFile specifies the filename in which to save final feedback tap values.
If the SaveFBTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

 References

John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.1.
Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,2.
2000.

Advanced Design System 2011.01 - Numeric Components

114

Advanced Design System 2011.01 - Numeric Components

115

 BlindFFE

Description: Blind feed-forward equalizer
Library: Numeric, Communications
Class: SDFBlindFFE

 Parameters

Name Description Default Type

NumFFtaps number of feed-forward taps 5 int

FFinitial feed-forward filter taps are initialized by users or not: NO, YES NO enum

FFtaps initial feed-forward filter taps (only valid when FFinitial is YES) {0, 0, 1,
0, 0}

real
array

EquAlgorithm adaptive algorithm: None, CMA, DD CMA enum

Fraction number of samples per symbol at input, range [1, 16]. Fraction=1:
symbol-spaced equalizer; Fraction=2~16: fractionally spaced equalizer

1 int

Alpha step size for tap adjustment 1e-4 real

SaveTapsFile filename in which to save final tap values string

 Pin Inputs

Pin Name Description Signal Type

1 input input signal before
equalizer

real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal after blind feed-forward
equalizer

real

 Notes/Equations

Time-dispersive channels can cause intersymbol interference (ISI). For example, in a1.
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is
a blind Feed-Forward Equalization (FFE), and it operates in blind equalization
algorithm whether the eyes are closed or opened.
In each firing, it consumes Fraction input tokens while produces one output token.2.
Implementation:3.
A block diagram of the equalizer is shown in Block Diagram of the FFE. This equalizer
works in blind equalization modes. During start-up and tracking, this equalizer
operates in blind algorithm whether the eyes are opened or closed.

Advanced Design System 2011.01 - Numeric Components

116

 Block Diagram of the FFE

In Block Diagram of the FFE, {x(k)} is the received sequence before equalizer,
{y(k)} is the equalized sequence, (C(0), C(1), ..., C(N-1)) is the taps of feed-forward
transversal filter. e(k) is the error signal of the blind equalization algorithm, the
decision signal

which is the output of the Slicer, α is the step size to adjust the equalizer taps. If
Fraction=1,

the feed-forward transversal filter is a linear equalizer. Otherwise

where Fraction is a parameter, and the feed-forward transversal filter is a Fractionally
Spaced Equalizer (FSE). N is the number of taps for this equalizer (parameter
NumFFtaps), T is the sampling time.
Equalization Algorithm4.
The blind equalizer algorithm works well when the eyes closed. The adaptive
algorithm of CMA and DD are adopted. The difference between LMS algorithm and
the blind algorithm is only the error signal e(k). The error signal e(k) is also the
difference in all of the blind equalization algorithms.
The error signal of CMA algorithm is as follows

where R2=1 in binary case.

is the decision signal. The error signal of DD algorithm is as follows:

Advanced Design System 2011.01 - Numeric Components

117

where

The blind equalization algorithm is as follows:

α is parameter Alpha.
For blind equalizers, no reference tap is defined to specify the delay introduced by5.
the equalizer. A common way for determining the delay is to compare the equalizer
output with the source empirically after the equalizer has converged.
Parameter Details:6.

NumFFtaps specifies the number of feed-forward taps.
FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.
FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.
EquAlgorithm selects the adaptive algorithm. If NONE is selected, it's used as a
non-adaptive equalizer.
Alpha specifies the step size for tap adjustment.
Fraction specifies the number of samples per symbol at input, range [1, 16].
SaveTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

 References

John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.1.
Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,2.
2000.

Advanced Design System 2011.01 - Numeric Components

118

 BlockPredictor

Description: Block Linear Predictor
Library: Numeric, Communications
Class: SDFBlockPredictor

 Parameters

Name Description Default Unit Type Range

Order order of the regression (also number of reflection coefficients to
generate)

1 int (0, ∞)

BlockSize number of input that use each reflection coefficient set 64 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input random process real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

BlockPredictor consists of Burg's algorithm to estimate the linear predictor1.
coefficients of an input random process and a block lattice to implement forward
lattice filter with reflection coefficients that are periodically updated from the output
of Burg's algorithm.
The BlockSize parameter tells how often the updates occur. This parameter specifies2.
how many input samples are to be processed using each set of reflection coefficients
from the output of Burg's algorithm.
The Order parameter tells how many reflection coefficients there are. The order of3.
the autoregressive model (all-pole signal model) in Burg's algorithm is also given by
the Order parameter.
The coefficients of autoregressive modeling in the BlockPredictor are the estimated4.
coefficients of the all-pole filter that could have produced the observations (input
data) given a white noise input.The definition of reflection coefficients varies in the
literature.
The reflection coefficients are the negative of the ones generated by Burg's algorithm5.
in the BlockPredictor, which correspond to the definition in most other texts, and to
the definition of partial-correlation (PARCOR) coefficients in the statistics literature.
See also: Burg, BlockLattice, BlockAllPole6.
For information regarding numeric communications component signals, refer to7.
Numeric Communications Components (numeric).

Advanced Design System 2011.01 - Numeric Components

119

 References

J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580,1.
Apr. 1975.
S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,2.
Englewood Cliffs, NJ, 1988.
S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.3.

Advanced Design System 2011.01 - Numeric Components

120

 CoderRS

Description: Reed Solomon Encoder
Library: Numeric, Communications
Class: SDFCoderRS

 Parameters

Name Description Default Symbol Unit Type Range

GF Define a Galois Field (2^GF) 8 m int [2,30]

CodeLength Length of output codeword 255 n int [3,2 m -1]

MessageLength Length of input message symbols 223 k int [1,CodeLength-2]

PrimPoly Coefficients of Primitive Polynonial 1 0 1 1 1 0 0 0
1

p(x) int
array

†

Root The first root of generator
polynomial

1 m 0 int [0,2 m -1 - (n -
k)]

† PrimPoly must be the coefficients of the m order of polynomial

 Pin Inputs

Pin Name Description Signal Type

1 in information symbol int

 Pin Outputs

Pin Name Description Signal Type

2 out systematical code int

 Notes/Equations

This model is used to perform Reed-Solomon (RS) encoding. RS codes are a class of1.
block codes that operate on non-binary symbols. The symbols are formed from m
bits of a binary data stream. A code block is then formed with n = 2 m - 1 symbols.
In each block, k symbols are formed from the encoder input and (n - k) parity
symbols are added. The code is thus a systematic code. The rate of the code is k/n,
and the code is able to correct up to t = (n - k - 1)/2 or (n - k)/2 symbol errors in a
block, depending on whether n - k is odd or even. For example, the code used in the
WCDMA [1] data transmission system is a (36,32) code shortened from RS code
(255,251) defined on Galois Field (2 8). A shortened code can be formed by taking 32
input symbols, padding them out with 219 all zero symbols to form 251 symbols, and
then encoding with a RS code (255,251). The 219 fixed symbols are then discarded
prior to transmission. The input pin consumes k tokens and the output pin produces n

Advanced Design System 2011.01 - Numeric Components

121

tokens for each firing.
Implementation2.
The code format is: RS code (n, k), defined on Galois Field (2 m).
Galois Field Generator
Galois Fields are set up according to the number of bits per symbol and the number
of symbols per block.
Generate GF (2 m) from the irreducible primitive polynomial. It is defined as the
polynomial of least degree, with coefficients in GF(2) and a highest degree coefficient
equal to 1. The polynomial is always of degree m.
The elements of Galois Field can have two representations: exponent or polynomial.
Let α represent the root of the primitive polynomial p(x). Then in GF(2 m), for any 0
 ≤ i ≤ 2 m - 2

where the binary vector (bi(0), bi(1),..., bi(m-1)) is the representation of the integer
polynomial[i]. Now exponent[i] is the element whose polynomial representation is
(bi(0), bi(1),..., bi(m-1)), and exponent[polynomial[i]] = i.
Polynomial representation is convenient for addition, exponent representation for
multiplication.
RS Encoder
The RS generator polynomial is generally defined as

where t is the correctable error number. It can be reduced to a 2t order of polynomial

Encoding is done by using a feedback shift register with appropriate connections
specified by the element g i . The encoded symbol is then

where in(x) is the polynomial representation of the input data, parity(x) is the
polynomial of the parity symbol.
The RS encoder diagram is illustrated in Reed Solomon Encoder.

 Reed Solomon Encoder

For information regarding numeric communications component signals, refer to3.
Numeric Communications Components (numeric).

Advanced Design System 2011.01 - Numeric Components

122

 References

NTT Mobile Communications Network Inc. "Specifications for W-CDMA Mobile1.
Communication System Experiment", October 9, 1997.
S. Lin, D. J. Costello, Error Control Coding Fundamentals and Applications, 1983.2.

Advanced Design System 2011.01 - Numeric Components

123

 DecoderRS

Description: Reed Solomon Decoder
Library: Numeric, Communications
Class: SDFDecoderRS

 Parameters

Name Description Default Symbol Unit Type Range

GF Define a Galois Field (2^GF) 8 m int [2,30]

CodeLength Length of input codewords 255 n int [3,2 m -1]

MessageLength Length of output message
symbols

223 k int [1,CodeLength-2]

PrimPoly Coefficients of primitive
polynomial

1 0 1 1 1 0 0 0
1

p(x) int
array

†

Root First root of generator polynomial 1 m 0 int [0,2 m-1 - (n -
k)]

† PrimPoly must be the coefficients of the m order of polynomial

 Pin Inputs

Pin Name Description Signal Type

1 in received symbol int

 Pin Outputs

Pin Name Description Signal Type

2 out decoded symbol int

 Notes/Equations

This model is used to perform RS decoding via the Berlekamp iterative algorithm [2].1.
The Berlekamp iterative algorithm locates the error in RS code and generates an2.
error location polynomial. By finding the root of the error location polynomial, the
error position can be determined. If decoding is successful, the information symbols
are output; otherwise, the received data is unaltered. The input pin consumes n
tokens and the output pin produces k tokens.
Decoding routines are described here.3.
For the shortened code, the same number of symbols 0 is inserted into the same
position as CoderRS and a Reed Solomon decoder is used to decode the block. After
decoding, the padded symbols are discarded, leaving the desired information
symbols.
Syndromes indicate erroneous situations. When the generator polynomial g(x) and

Advanced Design System 2011.01 - Numeric Components

124

the received codeword represented by r(x) are given, one or more errors have
occurred during transmission of an encoded block.
Let

where v(x) is the polynomial representation of the transmitted symbol.

where r(x) is the polynomial representation of the received symbol.
Then

where e(x) denotes the error patterns.
If r i - v i, then e i = 0; else e i = 1.

Remember that
v(x) = g(x)Q(x)
where Q(x) is the quotient.
So if α i is the root of g(x), then v(α i) = 0 and r(α i) = e(α i).
Now there is a simple procedure for checking the occurrence of errors at the receiver:
Calculate syndromes s(i), the syndromes are decided by the error patterns:

If one or more of the syndromes are not equal to zero, one or more symbol errors
occur in the received data. For example, if

are roots of g(x), then

.

.

.

Syndromes are used to find the error location polynomial.
Given the syndromes s(i), the decoding algorithm will synthesize an error location
polynomial. The roots of the polynomial indicate the error positions.
Assuming the received symbols have v symbol errors, the syndromes are
represented as:

.

.

.

where the error location is

Advanced Design System 2011.01 - Numeric Components

125

and

Now the error location polynomial is defined as

The Berlekamp iterative algorithm is used to construct this polynomial, which is the
key to RS decoding.
The algorithm is described here without proof; for more information, see Ref. [1].
An iterative table will be filled.

-1 1 1 0 -1

0 1 s 1 0 0

1

2 ... , 2t

where

is the iterative step number

 is the µth step iterative difference

is the order of
If

then

and

If

search for lines in the table to find step p in which d p ≠ 0 and the value of p - l p is

the maximum, then

and

For the two conditions

Iterate until the last line of the table Ω (2 t) (x) is calculated. If the order of the

Advanced Design System 2011.01 - Numeric Components

126

polynomial is greater than t (which means the received codeword block has more
than t errors) the error cannot be corrected.
For non-binary codes, the error values must be known.
The minimum order polynomial is iteratively solved to obtain the least number of
roots (error location number). The inverse element of the root indicates the error
location.
The error value is calculated based on the Ref. [2] equation

where

Then,

 References

E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.1.
S. Lin, D. J. Costello, Error Control Coding Fundamentals and Applications, 1983.2.

Advanced Design System 2011.01 - Numeric Components

127

 DeScrambler

Description: Input bit sequence descrambler
Library: Numeric, Communications
Class: SDFDeScrambler
C++ Code: See doc/sp_items/SDFDeScrambler.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Polynomial generator polynomial for the shift register - decimal, octal, or hex
integer

0440001 int (0, ∞)

ShiftReg initial state of the shift register - decimal, octal, or hex integer 1 int (-∞,
∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input bit sequence (zero or nonzero) int

 Pin Outputs

Pin Name Description Signal Type

2 output output bit sequence (zero or one) int

 Notes/Equations

This component descrambles the input bit sequence using a feedback shift register.1.
The taps of the feedback shift register are given by the Polynomial parameter.
This is a self-synchronizing descrambler that will exactly reverse the operation of the
Scrambler component if the corresponding parameter values of Scrambler and
DeScrambler are the same.
A self-synchronized descrambler is shown in Self-Synchronized Descrambler.

 Self-Synchronized Descrambler

See also, Scrambler (numeric).2.

Advanced Design System 2011.01 - Numeric Components

128

 References

E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition, Kluwer1.
Academic Publishers, 1994, pp. 595-603.

Advanced Design System 2011.01 - Numeric Components

129

 DeSpreader

Description: Frame Synchronized Direct-Sequence Spread Spectrum Demodulator
Library: Numeric, Communications
Class: SDFDeSpreader

 Pin Inputs

Pin Name Description Signal Type

1 in input spread spectrum signal real

 Pin Outputs

Pin Name Description Signal Type

2 out demodulated signal real

 Notes/Equations

DeSpreader is a frame synchronized direct-sequence spread spectrum demodulator.1.
Each input sample is demodulated with a 31-bit pseudo-noise spreading code. This
despreads the signal.
See also Spread, and RecSpread.2.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 9.1.

Advanced Design System 2011.01 - Numeric Components

130

 DFE

Description: decision feedback equalizer
Library: Numeric, Communications
Class: SDFDFE

 Parameters

Name Description Default Unit Type Range

NumFFtaps number of feed-forward taps 5 int

FFinitial feed-forward filter taps are initialized by users or not: NO,
YES

NO enum

FFtaps initial feed-forward filter taps (only valid when FFinitial is
YES)

{0, 0, 0,
0, 0}

 real
array

NumFBtaps number of feedback filter taps 2 int

FBinitial feedback filter taps are initialized by users or not: NO, YES NO enum

FBtaps initial feedback filter taps (only valid when FBinitial is YES) {0, 0} real
array

EquAlgorithm adaptive algorithm: None, LMS, RLS, ZF LMS enum

TrainSeqLen length of training sequence 1000 int

Fraction number of samples per symbol at input, range [1, 16].
Fraction=1: symbol-spaced equalizer; Fraction=2~16:
fractionally spaced equalizer

1 int

RefTap index of reference tap for LMS and RLS algorithms, range
[1, NumFFtaps]

3 int

Alpha step size for LMS algorithm 1e-3 real

Lambda weighting factor for RLS algorithm 0.999 real (0.0,
1.0)

Delta small positive constant for RLS algorithm 0.001 real (0.0,
10.0]

TargetMSE reference MSE in dB for stopping updating coefficients
when RLS equalizer reaches this MSE

-40 dB real (-100,
100]

SaveFFTapsFile filename in which to save final FF tap values string

SaveFBTapsFile filename in which to save final FB tap values string

 Pin Inputs

Pin Name Description Signal Type

1 input input signal before equalizer real

2 TrainSeq input training sequence for
equalizer

real

 Pin Outputs

Advanced Design System 2011.01 - Numeric Components

131

Pin Name Description Signal Type

3 output output signal after decision feedback equalizer real

 Notes/Equations

Time-dispersive channels can cause intersymbol interference (ISI). For example, in a1.
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is
a Decision Feedback Equalization (DFE), and it operates with training sequence. In
each firing, the input consumes Fraction input token and TrainSeq consumes one
input token, while produces one output token.
A block diagram of the equalizer is shown in Block Diagram of the DFE. This equalizer2.
works in training sequence mode.

 Block Diagram of the DFE

Here F means Fraction.
If the parameter EquAlgorithm is set to ZF, RLS or LMS, the equalizer works in3.
training and tracking modes. In the training mode, the training sequence (from Pin
TrainSeq) is used as training sequence. The number of training sequence is
TrainSeqLen. The error signal ek is from the training signal:

is the input training sequence.

is the equalized output sequence.
After the training mode, the decision feedback equalizer coefficient is converged and
the equalizer enters into the tracking mode. When the parameter EquAlgorithm is set
to ZF, LMS or RLS, the ZF, LMS or RLS adaptive algorithm is used in tracking mode
correspondingly. The error signal ek is from the decision signal of the equalized

Advanced Design System 2011.01 - Numeric Components

132

signal:

where
is the detected output sequence for binary case:

If the parameter EquAlgorithm is set to NONE, the equalizer works in non-adaptive
mode with fixed coefficients.
LMS Algorithm
The criterion most commonly used in the optimization of the equalizer coefficients is
the minimization of the mean square error (MSE) between the desired equalizer
output and the actual equalizer output.
MSE minimization can be accomplished recursively by use of the stochastic gradient
algorithm introduced by Widrow, called the LMS algorithm. This algorithm is
described by the coefficient update equation

where
C k is the vector of the equalizer coefficients at the kth iteration X k represents the

signal vector.
α is parameter Alpha.
This algorithm is applied on both the forward filter and the feedback filter in DFE
equalizer.
RLS Algorithm
The convergence rate of the LMS algorithm is slow because a single parameter α
controls the rate of adaptation. A fast converging algorithm is obtained if a recursive
least squares (RLS) criterion is adopted for adjustment of the equalizer coefficients.
The RLS iteration algorithm follows.
Calculate output:

Calculate Kalman gain vector:

Update inverse of the correlation matrix:

Update coefficients:

is parameter Lamda.

is a diagonal matrix with initial value Delta*I (here I is a diagonal matrix).

Advanced Design System 2011.01 - Numeric Components

133

Delta is parameter Delta.
This algorithm is applied on both the forward filter and the feedback filter in DFE
equalizer.
The updating of coefficients in RLS algorithm will be halted when the MSE averaged
over 100 consecutive symbols is less than a reference MSE defined by TargetMSE.
ZF Algorithm
The zero-forcing (ZF) solution is achieved by forcing the cross-correlation between
the error sequence

and the desired information sequence {I k} to be zero.

When in the training mode, the coefficients are updated as:

When in the tracking mode, the coefficients are updated as:

where
is the detected output sequence.
Since ZF is a linear equalizer, this algorithm will be applied only on the forward filter
in DFE equalizer while LMS algorithm is applied on the feedback filter in DFE
equalizer.
For LMS and RLS algorithms, the total delay caused by the equalizer is equal to4.
(RefTap-1)/Fraction. Usually the reference tap is set to the center tap in a linear
equalizer, or the center tap of the forward filter in a DFE equalizer.
For ZF algorithm, no delay is introduced by this equalizer after the equalizer has
converged. Note that ZF algorithm has a condition that the input signal needs to have
the eye open prior to equalization. That is, the convergence of ZF algorithm requires

L is the number of ISI affected symbols and the impulse response {fn} are
coefficients of the linear filter model which causes ISI.
Parameter Details:5.

NumFFtaps specifies the number of feed-forward taps.
FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.
FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.
NumFBtaps specifies the number of feedback filter taps.
FBinitial indicates whether the feedback filter taps are initialized by users or not.
If users don't want to set FBtaps, FBinitial is selected as NO and the FBtaps are
generated in code automatically.
FBtaps specifies the initial value of feedback filter taps if FBinitial is YES.
EquAlgorithm selects the equalizer algorithm.
TrainSeqLen specifies the length of training sequence.
Fraction specifies the number of samples per symbol at input, range [1, 16].
RefTap specifies the index of reference tap for LMS and RLS algorithms, ranged
from 1 to NumFFtaps.
Alpha specifies the step size for tap adjustment.
Lambda specifies weighting factor for RLS algorithm.

Advanced Design System 2011.01 - Numeric Components

134

Delta specifies a small positive constant for RLS algorithm.
TargetMSE specifies the reference MSE in dB for RLS algorithm. RLS equalizer
will stop updating coefficients when the MSE averaged over 100 consecutive
symbols is less than this reference.
SaveFFTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveFFTapsFile string is non-null, a file will be created with the
name given by that string, and the final tap values will be stored there after the
run has completed.
SaveFBTapsFile specifies the filename in which to save final feedback tap values.
If the SaveFBTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

 References

John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.1.
Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,2.
2000.

Advanced Design System 2011.01 - Numeric Components

135

 FFE

Description: feed-forward equalizer
Library: Numeric, Communications
Class: SDFFFE

 Parameters

Name Description Default Unit Type Range

NumFFtaps number of feed-forward taps 5 int

FFinitial feed-forward filter taps are initialized by users or not: NO,
YES

NO enum

FFtaps initial feed-forward filter taps (only valid when FFinitial is
YES)

{0, 0, 0,
0, 0}

 real
array

EquAlgorithm adaptive algorithm: None, LMS, RLS, ZF LMS enum

TrainSeqLen length of training sequence 1000 int

Fraction number of samples per symbol at input, range [1, 16].
Fraction=1: symbol-spaced equalizer; Fraction=2~16:
fractionally spaced equalizer

1 int

RefTap index of reference tap for LMS and RLS algorithms, range [1,
NumFFtaps]

3 int

Alpha step size for LMS algorithm 1e-3 real

Lambda weighting factor for RLS algorithm 0.999 real (0.0,
1.0)

Delta small positive constant for RLS algorithm 0.001 real (0.0,
10.0]

TargetMSE reference MSE in dB for stopping updating coefficients when
RLS equalizer reaches this MSE

-40 dB real (-100,
100]

SaveTapsFile filename in which to save final tap values string

 Pin Inputs

Pin Name Description Signal Type

1 input input signal before equalizer real

2 TrainSeq input training sequence for
equalizer

real

 Pin Outputs

Pin Name Description Signal Type

3 output output signal after decision feedback equalizer real

 Notes/Equations

Advanced Design System 2011.01 - Numeric Components

136

Time-dispersive channels can cause intersymbol interference (ISI). For example, in a1.
multipath scattering environment, the receiver sees delayed versions of a symbol
transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and thus improve the receiver's performance. This model is
a Feed-Forward Equalization (FFE), and it operates with training sequence. In each
firing, the input consumes Fraction input token and TrainSeq consumes one input
token, while produces one output token.
A block diagram of the equalizer is shown in Block Diagram of the FFE. This equalizer2.
works in training sequence mode.

 Block Diagram of the FFE

If the parameter EquAlgorithm is set to ZF, RLS or LMS, the equalizer works in3.
training and tracking modes. In the training mode, the training sequence (from Pin
TrainSeq) is used as training sequence. The number of training sequence is
TrainSeqLen. The error signal e k is from the training signal:

is the input training sequence.

is the equalized output sequence.
After the training mode, the decision feedback equalizer coefficient is converged and
the equalizer enters into the tracking mode. When the parameter EquAlgorithm is set
to ZF, LMS or RLS, the ZF, LMS or RLS adaptive algorithm is used in tracking mode
correspondingly. The error signal e k is from the decision signal of the equalized

signal:

Advanced Design System 2011.01 - Numeric Components

137

where
is the detected output sequence for binary case:

If the parameter EquAlgorithm is set to NONE, the equalizer works in non-adaptive
mode with fixed coefficients.
LMS Algorithm
The criterion most commonly used in the optimization of the equalizer coefficients is
the minimization of the mean square error (MSE) between the desired equalizer
output and the actual equalizer output.
MSE minimization can be accomplished recursively by use of the stochastic gradient
algorithm introduced by Widrow, called the LMS algorithm. This algorithm is
described by the coefficient update equation

where
C k is the vector of the equalizer coefficients at the kth iteration X k represents the

signal vector.
α is parameter Alpha.
RLS Algorithm
The convergence rate of the LMS algorithm is slow because a single parameter α
controls the rate of adaptation. A fast converging algorithm is obtained if a recursive
least squares (RLS) criterion is adopted for adjustment of the equalizer coefficients.
The RLS iteration algorithm follows.
Calculate output:

Calculate Kalman gain vector:

Update inverse of the correlation matrix:

Update coefficients:

is parameter Lamda.

is a diagonal matrix with initial value Delta*I (here I is a diagonal matrix).
Delta is parameter Delta.
The updating of coefficients in RLS algorithm will be halted when the MSE averaged
over 100 consecutive symbols is less than a reference MSE defined by TargetMSE.

Advanced Design System 2011.01 - Numeric Components

138

ZF Algorithm
The zero-forcing (ZF) solution is achieved by forcing the cross-correlation between
the error sequence

and the desired information sequence {Ik} to be zero.
When in the training mode, the coefficients are updated as:

When in the tracking mode, the coefficients are updated as:

where

is the detected output sequence.
For LMS and RLS algorithms, the total delay caused by the equalizer is equal to4.
(RefTap-1)/Fraction. Usually the reference tap is set to the center tap in a linear
equalizer, or the center tap of the forward filter in a DFE equalizer.
For ZF algorithm, no delay is introduced by this equalizer after the equalizer has
converged. Note that ZF algorithm has a condition that the input signal needs to have
the eye open prior to equalization. That is, the convergence of ZF algorithm requires

L is the number of ISI affected symbols and the impulse response {f n} are

coefficients of the linear filter model which causes ISI.
Parameter Details:5.

NumFFtaps specifies the number of feed-forward taps.
FFinitial indicates whether the feed-forward filter taps are initialized by users or
not. If users don't want to set FFtaps, FFinitial is selected as NO and the FFtaps
are generated in code automatically.
FFtaps specifies the initial value of feed-forward filter taps if FFinitial is YES.
EquAlgorithm selects the equalizer algorithm.
TrainSeqLen specifies the length of training sequence.
Fraction specifies the number of samples per symbol at input, range [1, 16].
RefTap specifies the index of reference tap for LMS and RLS algorithms, ranged
from 1 to NumFFtaps.
Alpha specifies the step size for tap adjustment.
Lambda specifies weighting factor for RLS algorithm.
Delta specifies a small positive constant for RLS algorithm.
TargetMSE specifies the reference MSE in dB for RLS algorithm. RLS equalizer
will stop updating coefficients when the MSE averaged over 100 consecutive
symbols is less than this reference.
SaveTapsFile specifies the filename in which to save final feed-forward tap
values. If the SaveTapsFile string is non-null, a file will be created with the name
given by that string, and the final tap values will be stored there after the run
has completed.

 References

Advanced Design System 2011.01 - Numeric Components

139

John G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995.1.
Dimitris G. Manolakis et.al, Statistical and Adaptive Signal Processing, McGraw-Hill,2.
2000.

Advanced Design System 2011.01 - Numeric Components

140

 FreqPhase

Description: Frequency Offset or Phase Jitter Sampler
Library: Numeric, Communications
Class: SDFFreqPhase

 Parameters

Name Description Default Unit Type Range

SampleRate input signal sample rate 2 * PI real [0, ∞)

PhaseJitterFrequencyHz frequency of phase jitter distortion to add to signal 0.0 real [0.0, ∞)

FrequencyOffsetHz frequency offset distorion to add to signal 0.0 real [0.0, ∞)

PhaseJitterAmplitudeDeg phase jitter peak amplitude, in degrees 0.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input signal real

 Pin Outputs

Pin Name Description Signal Type

2 out output signal real

 Notes/Equations

FreqPhase can be used to impose a frequency offset or phase jitter, or both, on a1.
signal in order to model channels (such as telephone channels) that suffer these
impairments.
Very low- and very high-frequency signals (near the Nyquist frequency) will be2.
distorted due to the Hilbert filter.
See also, PhaseShift (numeric).3.

Advanced Design System 2011.01 - Numeric Components

141

 HilbertSplit

Description: Real to Analytic Signal Converter
Library: Numeric, Communications
Class: SDFHilbertSplit

 Parameters

Name Description Default Unit Type Range

Delay processing delay of this block 32 int [0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in real input signal real

 Pin Outputs

Pin Name Description Signal Type

2 out analytic output signal complex

 Notes/Equations

HilbertSplit converts the real input signal into an analytic signal using a phase1.
splitter. The Delay parameter determines the length and, therefore, the accuracy of
the Hilbert filter used. The Hilbert filter has (2 × Delay + 1) taps. A larger value for
delay gives a more accurate filter, but increases the processing time and the delay
through the system. The component scales the input signal so that input and output
signals have the same rms value.
See also, Hilbert (numeric).2.

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

142

 InterleaveDeinterleave

Description: Interleaver / Deinterleaver
Library: Numeric, Communications
Class: SDFInterleaveDeinterleave
Derived From: Transpose
C++ Code: See doc/sp_items/SDFInterleaveDeinterleave.html under your installation
directory.

 Parameters

Name Description Default Unit Type Range

Rows number of rows of the interleave/deinterleave matrix 8 int (0, ∞)

Columns number of columns of the interleave/deinterleave matrix 8 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

This component is a general purpose interleaver/de-interleaver. Every time it fires it1.
reads (Rows × Columns) samples from its input and writes them to its output in a
different order. Its operation is equivalent to writing the samples read from its input
in a Rows × Columns matrix row-wise, then reading the matrix elements column-
wise and writing them to the output.
Alternatively, the Transpose (numeric) component in the Numeric Control library can
be used.

Advanced Design System 2011.01 - Numeric Components

143

 M_PSK

Description: Modulator for M-ary PSK including BPSK, QPSK, 8PSK, 16PSK, 32PSK,
64PSK, 128PSK, 256PSK and 512PSK
Library: Numeric, Communications
Class: SDFM_PSK

 Parameters

Name Description Default Unit Type Range

ModType Modulation type: BPSK, QPSK, PSK8, PSK16, PSK32, PSK64, PSK128,
PSK256, PSK512

QPSK enum

 Pin Inputs

Pin Name Description Signal Type

1 In Input bit sequence int

 Pin Outputs

Pin Name Description Signal Type

2 Out Output complex symbol complex

 Notes/Equations

M_PSK performs a M-ary phase shift key (PSK) modulation on the input bit stream,1.
producing a Gray coded complex output signal. This component supports all popular
M-ary PSK modulations in communication systems, including BPSK (2-BPSK), QPSK
(4-PSK), 8-, 16-, 32-, 64-, 128-, 256-, and 512-PSK.
This is a multirate component. In general, if an M-ary PSK modulation is selected by2.
using ModeType, the component consumes n = log2(M) bits from the input and
produces one modulated complex output. Input bits are Gray encoded and mapped
to an output constellation point as shown in BPSK and QPSK Modulation Using Gray
Encoding to 32-PSK Modulation Using Gray Coding. For example, if ModType = PSK8,
the component consumes log2(8) = 3 bits from the input for Gray coded bits then
maps these coded bits to a corresponding constellation point as shown in 8PSK
Modulation Using Gray Coding.
While there are many ways to encode and map sets of input bits into an M-point PSK3.
constellation, Gray coding is always used for modulations to reduce error probabilities
in communication systems. For M_PSK, a generic Labeling Expansion method
proposed by E. Agrell [1] is used for Gray-encoding the input bits.
For specific mapping details, refer to Mapper (numeric).

 BPSK and QPSK Modulation Using Gray Encoding

Advanced Design System 2011.01 - Numeric Components

144

 8PSK Modulation Using Gray Coding

 16-PSK Modulation Using Gray Coding

Advanced Design System 2011.01 - Numeric Components

145

 32-PSK Modulation Using Gray Coding

Advanced Design System 2011.01 - Numeric Components

146

 References
E. Agrell, J.Lassing, E. G. Strm, and T. Ottosson, "On the optimality of the binary4.
reflected Gray code," IEEE Transactions on Information Theory, vol. 50, no. 12, pp.
3170-3182, Dec. 2004.
M. Jeruchim, P. Balaban and K. Shanmugan, Simulation of Communication Systems,5.
Plenum Press, New York and London, 1992.

Advanced Design System 2011.01 - Numeric Components

147

 NoiseChannel

Description: Channel Modeling with Additive White Gaussian Noise
Library: Numeric, Communications
Class: SDFNoiseChannel

 Parameters

Name Description Default Unit Type Range

NoiseVariance maximum settable value for noise variance 1.0 real [0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input signal real

 Pin Outputs

Pin Name Description Signal Type

2 out input signal plus Gaussian noise real

 Notes/Equations

NoiseChannel models a channel with additive white Gaussian noise.1.
If x(t) is a band-limited input signal to a channel and y(t) is the corresponding output
signal then, for the additive white Gaussian noise waveform channel, the real output
is
y(t) = x(t) + n(t)
where n(t) is a sample function of the additive noise process.
See also, AWGN_Channel (numeric).2.

Advanced Design System 2011.01 - Numeric Components

148

 NonlinearDistortion

Description: Second and Third Harmonic Distortion
Library: Numeric, Communications
Class: SDFNonlinearDistortion

 Parameters

Name Description Default Unit Type Range

SecondHarmonic proportion of second harmonic of input to add to original
signal

0.0 real (-∞,
∞)

ThirdHarmonic proportion of third harmonic of input to add to original signal 0.0 real (-∞,
∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input signal real

 Pin Outputs

Pin Name Description Signal Type

2 out output signal real

 Notes/Equations

With NonlinearDistortion, second- and third-order harmonic distortion is generated by1.
squaring and cubing the input signal and adding the results in controlled proportions
to the original signal.
output = input + SecondHarmonic × (input) 2 + ThirdHarmonic × (input) 3

Advanced Design System 2011.01 - Numeric Components

149

 PAM2Rec

Description: 2-Level Pulse Amplitude Modulation Input Signal Receiver
Library: Numeric, Communications
Class: SDFPAM2Rec

 Pin Inputs

Pin Name Description Signal Type

1 in received PAM signal real

 Pin Outputs

Pin Name Description Signal Type

2 out bit that corresponds to the received PAM pulse int

 Notes/Equations

PAM2Rec receives a 2-level pulse amplitude modulation (PAM) signal and extracts the1.
transmitted bits. It is assumed that the received PAM signal is a nonreturn-to-zero
polar format with a symbol interval of 16. PAM2Rec will receive signals generated by
the PAM2Xmit component.
Once the transmitted bits are extracted, these are descrambled before being sent to2.
the output. The descrambling polynomial matches that of the PAM2Xmit component
scrambler.
See also: DeScrambler (numeric), DownSample (numeric), PAM2Xmit (numeric), and3.
Scrambler (numeric).

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 6.1.

Advanced Design System 2011.01 - Numeric Components

150

 PAM2Xmit

Description: 2-Level Pulse Amplitude Modulation Transmitter
Library: Numeric, Communications
Class: SDFPAM2Xmit

 Parameters

Name Description Default Unit Type Range

ExcessBW excess bandwidth of the square root raised-cosine pulses used to
transmit data

1.0 real [0,1]

FilterLength length of square root raised-cosine pulses used to transmit data 32 real (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input bits to be transmitted int

 Pin Outputs

Pin Name Description Signal Type

2 out square root raised-cosine pulses that correspond to the input bits real

 Notes/Equations

PAM2Xmit uses 2-level pulse amplitude modulation to convert the input bits into a1.
transmission signal. The PAM signal is a nonreturn-to-zero polar format with square
root raised-cosine pulses. The excess bandwidth and length of the square root raised-
cosine pulses are set by the ExcessBW and FilterLength parameters. The PAM levels
are +2 and −2; the symbol interval is 16; therefore, for each input bit received a 16-
sample output pulse is produced.
Note that the input bits are scrambled before transmitting. The bits must be
descrambled after these are received.
See also: DeScrambler (numeric), PAM2Rec (numeric), Scrambler (numeric).2.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 6.1.

Advanced Design System 2011.01 - Numeric Components

151

 PAM4Rec

Description: 4-Level Pulse Amplitude Modulation Input Signal Receiver
Library: Numeric, Communications
Class: SDFPAM4Rec

 Pin Inputs

Pin Name Description Signal Type

1 in received PAM signal real

 Pin Outputs

Pin Name Description Signal Type

2 out bit that corresponds to received PAM pulse int

 Notes/Equations

PAM4Rec receives a 4-level pulse amplitude modulation signal and extracts the1.
transmitted bits. The four levels should be −3, −1, +1, and +1. It is assumed that
the received PAM format has a symbol interval of 16. PAM4Rec will receive signals
generated by PAM4Xmit.
Once the transmitted bits are extracted, these are descrambled before being sent to
the output. The descrambling polynomial matches the PAM4Xmit component
scrambler.
See also: DeScrambler (numeric), DownSample (numeric), PAM4Xmit (numeric).2.

 References

For more information about pulse amplitude modulation, see: S. Hakin, Digital1.
Communications, John Wiley & Sons, 1988, chapter 6.

Advanced Design System 2011.01 - Numeric Components

152

 PAM4Xmit

Description: 4-Level Pulse Amplitude Modulation Transmitter
Library: Numeric, Communications
Class: SDFPAM4Xmit

 Parameters

Name Description Default Unit Type Range

ExcessBW excess bandwidth of square root raised-cosine pulses used to
transmit data

1.0 real [0,1]

FilterLength length of square root raised-cosine pulses used to transmit data 32 real (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input bits to be transmitted int

 Pin Outputs

Pin Name Description Signal Type

2 out square root raised-cosine pulses that correspond to the input bits real

 Notes/Equations

PAM4Xmit uses 4-level pulse amplitude modulation to convert pairs of input bits into1.
a transmission signal. The input bits are first scrambled before transmitting. The bits
must be descrambled after these are received.
The PAM format used is a nonreturn-to-zero polar format with square root raised-
cosine pulses. The excess bandwidth and length of the square root raised-cosine
pulses are set by the ExcessBW and FilterLength parameters. The PAM levels are +3,
+1, −1, and −3. The symbol interval is 16; therefore, for each two input bits
received a 16-sample output pulse is produced.
See also: DeScrambler (numeric), PAM4Rec (numeric), Scrambler (numeric).2.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 6.1.

Advanced Design System 2011.01 - Numeric Components

153

 PCM_BitCoder

Description: Pulse-Code Modulation Encoder
Library: Numeric, Communications
Class: SDFPCM_BitCoder

 Pin Inputs

Pin Name Description Signal Type

1 in analog input signal with values from -4000 to 4000 real

 Pin Outputs

Pin Name Description Signal Type

2 out PCM encoded bits int

 Notes/Equations

PCM_BitCoder is a 64-kbits-per-second pulse-code modulation encoder. Each input1.
value is companded and quantized to 8 bits that are then sent to the output.
The encoding follows the CCITT Recommendation G.711.2.
PCM_BitCoder works with PCM_BitDecoder (numeric), which performs the reverse3.
operation.

Advanced Design System 2011.01 - Numeric Components

154

 PCM_BitDecoder

Description: Pulse-Code Modulation Decoder
Library: Numeric, Communications
Class: SDFPCM_BitDecoder

 Pin Inputs

Pin Name Description Signal Type

1 in PCM encoded bits int

 Pin Outputs

Pin Name Description Signal Type

2 out corresponding analog signal value real

 Notes/Equations

PCM_BitDecoder is a 64-kbits-per-second pulse-code modulation decoder. Each set of1.
8 input bits is mapped to its decoded analog value that is then sent to the output.
The decoding follows the CCITT Recommendation G.711.2.
PCM_BitDecoder works with the PCM_BitCoder (numeric) component, which performs3.
the reverse operation.

Advanced Design System 2011.01 - Numeric Components

155

 PhaseShift

Description: Phase Shift Distortion
Library: Numeric, Communications
Class: SDFPhaseShift

 Parameters

Name Description Default Unit Type Range

HilbertFilterLength Hilbert filter length 64 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input signal real

2 shift phase shift in radians real

 Pin Outputs

Pin Name Description Signal Type

3 out output signal real

 Notes/Equations

PhaseShift adds phase shift distortion found in channels such as telephone channels.1.
The output is the input signal with the phase of the input signal shifted by the value
of the shift input.
Very low- and very high-frequency signals (near the Nyquist frequency) will be2.
distorted due to the Hilbert filter. This can be partially overcome by setting the
HilbertFilterLength parameter for a longer, more accurate filter. The default Hilbert
filter is acceptable for most applications.
See also, FreqPhase (numeric).3.

Advanced Design System 2011.01 - Numeric Components

156

 PSK2Rec

Description: Binary Phase-Shift Keying Demodulator
Library: Numeric, Communications
Class: SDFPSK2Rec

 Parameters

Name Description Default Unit Type Range

CarrierFrequency cosine carier wave frequency 2000 real (0, ∞)

SamplingRate carrier wave sampling rate 8000 real (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in received binary phase-shift keyed transmission signal real

 Pin Outputs

Pin Name Description Signal Type

2 out binary wave of the received data (-N,+N) real

 Notes/Equations

This component accepts a BPSK modulated wave and outputs the recovered binary1.
data stream.
The input sequence is first demodulated by multiplication with a cosine wave2.
sequence. The demodulated sequence is filtered with a square root of raised-cosine
filter and scaled with an appropriate factor so that the output level of the
downsampler that follows is independent of the filter length (which depends on the
sampling and carrier frequencies given by the designer). Conversion to bits is done
by downsampling, taking the sign of the downsampled values and mapping 1 and −1
to 1 and 0, respectively. Note that if a BPSK transmitter (PSK2Xmit) and receiver
(PSK2Rec) are concatenated, the output bit stream will be delayed by one bit with
respect to the input bit stream; this is due to the delay introduced by the filters.
See also, PSK2Xmit (numeric).3.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 7.1.

Advanced Design System 2011.01 - Numeric Components

157

 PSK2Xmit

Description: Binary Phase-Shift Keying Modulator
Library: Numeric, Communications
Class: SDFPSK2Xmit

 Parameters

Name Description Default Unit Type Range

CarrierFrequency cosine carrier wave frequency 2000 real (0, ∞)

SamplingRate carrier wave sampling rate 8000 real (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in binary wave (polar from) to be modulated real

 Pin Outputs

Pin Name Description Signal Type

2 out binary phase shift keyed transmission signal real

 Notes/Equations

This component accepts a binary bit stream and outputs a BPSK modulated wave.1.
The input bit stream is first converted to an NRZ waveform that is then filtered by a2.
square root of raised-cosine filter. The interpolation factor of the filter is chosen so
that the rate at the output of the filter matches the sampling rate. The filtered
sequence is scaled with an appropriate factor so that the amplitude level at the
output of the transmitter is independent of the filter length (which depends on the
sampling and carrier frequencies given by the designer). The sequence is then
multiplied by a cosine wave resulting in a BPSK modulated wave.
See also, PSK2Rec (numeric).3.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 7.1.

Advanced Design System 2011.01 - Numeric Components

158

 QAM4

Description: 4-State Quadrature Amplitude Modulator
Library: Numeric, Communications
Class: SDFQAM4

 Pin Inputs

Pin Name Description Signal Type

1 in input bit sequence int

 Pin Outputs

Pin Name Description Signal Type

2 out output symbol sequence complex

 Notes/Equations

QAM4 performs a 4-point quadrature amplitude modulation on the input bit stream,1.
producing a complex output signal. The component consumes 2 bits from the input
for each complex valued output it produces. Mapping of the 2 bits to the 4 points
uses Gray encoding, that is:
Input Bits --> Output Point

0, 1 --> (−1, 1)

0, 0 --> (1, 1)

1, 1 --> (−1, −1)

1, 0 --> (1, −1)

There are many ways to map sets of 2 bits into a 4-point grid; therefore, there are2.
many different variations of 4QAM encoding. This component implements one of
them.
See also, QAM4Slicer (numeric).3.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, pages 318-322.1.

Advanced Design System 2011.01 - Numeric Components

159

 QAM4Slicer

Description: 4-State Quadrature Amplitude Modulator Slicer
Library: Numeric, Communications
Class: SDFQAM4Slicer

 Pin Inputs

Pin Name Description Signal Type

1 in input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 out output 4-QAM signal at exact grid points complex

 Notes/Equations

This component outputs the 4QAM grid point that is geometrically closest to the input1.
point.
The quadrature amplitude modulation grid is assumed to be:2.

QAM4Slicer works with QAM4; refer to QAM4 (numeric) for details of 4QAM encoding.3.

Advanced Design System 2011.01 - Numeric Components

160

 QAM16

Description: 16-State Quadrature Amplitude Modulator
Library: Numeric, Communications
Class: SDFQAM16

 Pin Inputs

Pin Name Description Signal Type

1 in input bit sequence int

 Pin Outputs

Pin Name Description Signal Type

2 out output symbol sequence complex

 Notes/Equations

QAM16 performs a 16-point quadrature amplitude modulation on the input bit1.
stream, producing a complex output signal. The component consumes 4 bits from the
input for each complex valued output it produces. The first 2 bits are Gray and
differentially encoded and are used to select the quadrant of the output point. The
last 2 bits are used to select the point inside the quadrant selected by the first 2 bits.
Mapping of the last 2 bits to the 4 points in each quadrant uses Gray encoding.
Mapping is also invariant to phase rotations that are multiples of 90 degrees.
There are many ways to map sets of 4 bits into a 16-point grid; therefore, there are2.
many different variations of 16QAM encoding. This component implements one of
them.
See also: QAM16Decode (numeric) and QAM16Slicer (numeric).3.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, pages 318-322.1.

Advanced Design System 2011.01 - Numeric Components

161

 QAM16Decode

Description: 16-State Quadrature Amplitude Modulator Decoder
Library: Numeric, Communications
Class: SDFQAM16Decode

 Pin Inputs

Pin Name Description Signal Type

1 in input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 out output bit sequence int

 Notes/Equations

QAM16Decode decodes the 16QAM input signal into an output bit stream. It is1.
assumed that the input 16QAM signal was encoded using the QAM16 component. For
each value of the input, 4 bits are written at the output.
See also: QAM16 (numeric) and QAM16Slicer (numeric).2.

Advanced Design System 2011.01 - Numeric Components

162

 QAM16Slicer

Description: 16-State Quadrature Amplitude Modulator Slicer
Library: Numeric, Communications
Class: SDFQAM16Slicer

 Pin Inputs

Pin Name Description Signal Type

1 in input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 out output 16-QAM signal at exact grid points complex

 Notes/Equations

The component outputs the 16QAM grid point that is geometrically closest to the1.
input point.
The quadrature amplitude modulation grid is assumed to be:2.

QAM16Slicer works with QAM16; refer to QAM16 (numeric) for details of 16QAM3.
encoding.

Advanced Design System 2011.01 - Numeric Components

163

 QAM64

Description: 64-State Quadrature Amplitude Modulator
Library: Numeric, Communications
Class: SDFQAM64

 Pin Inputs

Pin Name Description Signal Type

1 in input bit sequence int

 Pin Outputs

Pin Name Description Signal Type

2 out output symbol sequence complex

 Notes/Equations

QAM64 performs a 64-point quadrature amplitude modulation on the input bit1.
stream, producing a complex output signal. The component consumes 6 bits from the
input for each complex valued output it produces. The first 2 bits are Gray and
differentially encoded and used to select the quadrant of the output point. The last 4
bits are used to select the point inside the quadrant selected by the first 2 bits.
Mapping of the last 4 bits to the 16 points in each quadrant uses Gray encoding.
Mapping is also invariant to phase rotations that are multiples of 90 degrees.
There are many ways to map sets of 6 bits into a 64-point grid; therefore, there are2.
many different variations of 64QAM encoding. This component implements one of
them.
See also: QAM64Decode (numeric) and QAM64Slicer (numeric).3.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, pages 318-322.1.

Advanced Design System 2011.01 - Numeric Components

164

 QAM64Decode

Description: 64-State Quadrature Amplitude Modulator Decoder
Library: Numeric, Communications
Class: SDFQAM64Decode

 Pin Inputs

Pin Name Description Signal Type

1 in input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 out output bit sequence int

 Notes/Equations

QAM64Decode decodes the 64QAM input signal into an output bit stream. It is1.
assumed that the input 64QAM signal was encoded using the QAM64 component. For
each value at the input, 6 bits are written at the output.
See also: QAM64 (numeric) and QAM64Slicer (numeric).2.

Advanced Design System 2011.01 - Numeric Components

165

 QAM64Slicer

Description: 64-State Quadrature Amplitude Modulator Slicer
Library: Numeric, Communications
Class: SDFQAM64Slicer

 Pin Inputs

Pin Name Description Signal Type

1 in input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 out output 64-QAM signal at exact grid points complex

 Notes/Equations

This component outputs the 64QAM grid point that is geometrically closest to the1.
input point.
The quadrature amplitude modulation grid is assumed to be:2.

QAM64Slicer works with QAM64. Refer to QAM64 (numeric) for details of 64QAM3.
encoding.

Advanced Design System 2011.01 - Numeric Components

166

 RaisedCosine

Description: Raised-cosine filter
Library: Numeric, Communications
Class: SDFRaisedCosine
Derived From: FIR
C++ Code: See doc/sp_items/SDFRaisedCosine.html under your installation directory.

 Parameters

Name Description Default Symbol Unit Type Range

Decimation decimation ratio 1 D int [1, ∞)

DecimationPhase decimation phase 0 int [0,Decimation-1]

Interpolation interpolation ratio 16 I int [1, ∞)

Length number of taps 64 L int [1, ∞)

SymbolInterval distance from center to first zero crossing 16 T int [1, ∞)

ExcessBW excess bandwidth 1.0 α real [0,1]

SquareRoot square root raised-cosine pulse: NO, YES NO enum

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

 Pin Outputs

Pin Name Description Signal Type

2 signalOut real

 Notes/Equations

RaisedCosine implements a finite-impulse response filter with a raised-cosine or1.
square root raised-cosine frequency response. Excess bandwidth (also referred to as
rolloff factor or alpha) is given by ExcessBW, symbol interval (in number of samples)
of the application is given by SymbolInterval, length of filter (number of taps) is
given by Length.
This filter is derived from the FIR filter that uses an internal polyphase structure. This
algorithm efficiently implements the rational sample rate changes with decimation
and interpolation. For more information on multi-rate concepts, refer to FIR
component documentation.
For the ordinary raised-cosine response, ideally the impulse response of the filter2.
would be

Advanced Design System 2011.01 - Numeric Components

167

However, this ideal pulse is centered at 0, but we can only implement causal filters.
Therefore, the impulse response is actually

where

The impulse response is simply truncated outside this range, so the impulse response
will generally not be symmetric if L is even because it will have one more sample to
the left than to the right of center. Unless this extra sample is 0, the filter will not
have linear phase if L is even. For the ordinary raised-cosine response, the distance
(in number of samples) from the center to the first zero crossing is given by T.
The output sample rate is I times the input. The Interpolation default is set to 163.
because this pulse is used in digital communication systems for the line coding of
symbols, and upsampling is necessary. In this case, 16 outputs will be produced for
each input. Typically, the value of Interpolation is the same as SymbolInterval.
When SquareRoot is selected for the raised-cosine filter with and without4.
interpolation, some interesting facts can be observed:

The output of two-cascaded square root raised-cosine filter is approximately
equal to the output of raised-cosine filter without square root when using the
same input signal. In other words: h(n) is a raised-cosine filter and H(z) is a
corresponding frequency response for h(n); h1(n) is a square-rooted raised-
cosine filter and H1 (z) is a frequency response for h1(n). We should have h(n)
= h1(n) × h1(n) or H(z) = H1(z)H1(z).
The output of the raised-cosine filter with interpolation rate I should equal the
output of an UpSample component with its Factor parameter set to I followed by
two cascaded square-root raised-cosine filters when using the same input signal.
The amplitude output value of square root raised-cosine filter should show
results similar to the amplitude output value of square root raised-cosine filter
with interpolation rate I when using the same input signal. However, it can be
seen that the difference is more output amplitude data from the square root
raised-cosine filter with interpolation rate I compared to square root raised-
cosine filter without interpolation rate. This is because every two input-sampled
data, I zeros are introduced during upsampling.

See also, RaisedCosineCx (numeric).5.

 References

E. A. Lee and D. G. Messerchmitt, Digital Communication, Kluwer Academic1.
Publishers, Boston, 1988.
I. Korn, Digital Communications, Van Nostrand Reinhold, New York, 1985.2.

Advanced Design System 2011.01 - Numeric Components

168

Advanced Design System 2011.01 - Numeric Components

169

 RaisedCosineCx

Description: Complex Raised-Cosine Filter
Library: Numeric, Communications
Class: SDFRaisedCosineCx

 Parameters

Name Description Default Unit Type Range

Decimation decimation ratio 1 int [1, ∞)

DecimationPhase decimation phase 0 int [0,Decimation-\1]

Interpolation interpolation ratio 16 real [1, ∞)

Length number of taps 64 int [1, ∞)

SymbolInterval distance from center to first zero crossing 16 int [1, ∞)

ExcessBW excess bandwidth, between 0 and 1 1.0 real [0,1]

SquareRoot square root raised-cosine pulse: NO, YES NO enum

 Pin Inputs

Pin Name Description Signal Type

1 input input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 output output signal complex

 Notes/Equations

RaisedCosineCx implements a pair of FIR filters with a raised-cosine or square root1.
raised-cosine frequency response. The real part of the complex input goes through
one filter to become the real part of the output signal. Similarly, the imaginary part
of the input goes through the other filter to become the imaginary part of the output
signal.
The excess bandwidth (also referred to as rolloff factor or alpha) for both filters is2.
given by ExcessBW; the symbol interval (in number of samples) of the application is
given by SymbolInterval; and the length of the filters (the number of taps) is given
by Length. By default, this component upsamples by a factor of 16, so 16 outputs will
be produced for each input unless the Interpolation parameter is changed.
For raised-cosine algorithm details, refer to the RaisedCosine (numeric) component.3.

Advanced Design System 2011.01 - Numeric Components

170

 RecSpread

Description: Spread Spectrum Receiver
Library: Numeric, Communications
Class: SDFRecSpread

 Parameters

Name Description Default Unit Type Range

PulseDuration number of times to repeat each transmitted sample 1 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in received direct-sequence spread spectrum signal real

 Pin Outputs

Pin Name Description Signal Type

2 out received data real

 Notes/Equations

RecSpread is a direct-sequence spread spectrum receiver. The received signal is first1.
downsampled to remove any signal repetition due to the PulseDuration. The received
signal is then modulated with the same 31-bit pseudo-noise spreading code used in
the XmitSpread component. The demodulated signal is then correlated and quantized
to determine if the received signal is 1 or 0.
See also DeSpreader (numeric), Spread (numeric), and XmitSpread (numeric).2.

 References

For more information about spread spectrum modulation, see: S. Hakin, Digital1.
Communications, John Wiley & Sons, 1988, chapter 9.

Advanced Design System 2011.01 - Numeric Components

171

 Scrambler

Description: Input bit sequence scrambler
Library: Numeric, Communications
Class: SDFScrambler
C++ Code: See doc/sp_items/SDFScrambler.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Polynomial generator polynomial for the shift register - decimal, octal, or hex
integer

0440001 int

ShiftReg initial state of the shift register - decimal, octal, or hex integer 1 int

 Pin Inputs

Pin Name Description Signal Type

1 input input bit sequence (zero or nonzero) int

 Pin Outputs

Pin Name Description Signal Type

2 output output bit sequence (zero or one) int

 Notes/Equations

This component scrambles the input bit sequence using a feedback shift register, as1.
shown in Feedback Shift Register. The taps of the feedback shift register are given by
the Polynomial parameter, which should be a positive integer. The nth bit of this
integer indicates whether the nth tap of the delay line is fed back. The low-order bit
is called the 0th bit, and must be set. The next low-order bit indicates whether the
output of the first delay should be fed back, and so on. The default Polynomial is an
octal number defining the V.22bis scrambler.
In scramblers based on feedback shift registers, all the bits to be fed back are2.
exclusive-ORed together (their parity is calculated), and the result is exclusive-ORed
with the input bit. This result is produced at the output and shifted into the delay
line. With proper choice of polynomial, the resulting output appears highly random
even if the input is highly non-random (for example, all 0s or all 1s).

 Feedback Shift Register

Advanced Design System 2011.01 - Numeric Components

172

If the polynomial is a primitive polynomial, then the feedback shift register is a so-3.
called maximal length feedback shift register. This means that with a constant input,
the output will be sequence with period 2 N −1 where N is the order of the
polynomial (the length of the shift register). This is the longest possible sequence.
Moreover, within this period the sequence will appear to be white, in that a calculated
autocorrelation will be very nearly an impulse. Therefore, the scrambler with a
constant input can be very effectively used to generate a pseudo-random bit
sequence.
The maximal-length feedback shift register with constant input will pass through 2 N

 −1 states before returning to a state it has been in before. This is one short of the 2 N

states that a register with N bits can take on. This one missing state, in fact, is a
lock-up state, in that if the input is an appropriate constant, the scrambler will cease
to produce random-looking output, and will output a constant. For example, if the
input is all zeros, and the initial state of the scrambler is zero, then the outputs will
be all zero, hardly random. This is easily avoided by initializing the scrambler to some
non-0 state. That is why the default value for the ShiftReg parameter is set to 1.
The Polynomial parameter must be carefully chosen. It must represent a primitive4.
polynomial, which is one that cannot be factored into two (nontrivial) polynomials
with binary coefficients. For details, refer to [1].
The table below lists primitive polynomials (expressed as octal numbers so that these5.
are easily translated into taps on shift register); these will result in maximal-length
pseudo-random sequences if the input is constant and lockup is avoided.
Order Polynomial Order Polynomial Order Polynomial

 11 04005 21 010000005

2 07 12 010123 22 020000003

3 013 13 020033 23 040000041

4 023 14 042103 24 0100000207

5 045 15 0100003 25 0200000011

6 0103 16 0210013 26 0400000107

7 0211 17 0400011 27 01000000047

8 0435 18 01000201 28 02000000011

9 01021 19 02000047 29 04000000005

10 02011 20 04000011 30 010040000007

The leading 0 in the polynomials indicates an octal number. Note also that reversing
the order of the bits in any of these numbers will also result in a primitive
polynomial. Therefore, the default value for the Polynomial parameter is 0440001 in
octal, or "100 100 000 000 000 001" in binary. Reversing these bits we get "100 000
000 000 001 001" in binary, or 0400011 in octal. This latter number is listed in the
table as the primitive polynomial of order 17. The order is the index of the highest-
order non-0 bit in the polynomial, where the low-order bit has index 0.
Because the polynomial and the feedback shift register are both implemented using
type int, the order of the polynomial is limited by the size of the int data type. For
simplicity and portability, the polynomial is also not allowed to be interpreted as a

Advanced Design System 2011.01 - Numeric Components

173

negative integer, so the sign bit cannot be used. Therefore, if int is a 32-bit word,
then the highest order polynomial allowed is 30 (recall that indexing for the order
starts at 0, and we cannot use the sign bit). The primitive polynomials in the table
are up to order 30 because of 32-bit integer machines.
Both the Polynomial and ShiftReg parameters can be set to a decimal, octal, or hex
value. To enter an octal or hex value, prefix it with 0 or 0x, respectively. For
example, in order to use the primitive polynomial of order 11, set Polynomial to
04005, 0x805, or 2053.
See also, DeScrambler (numeric).6.

 References

Lee and Messerschmitt, Digital Communication, Second Edition, Kluwer Academic1.
Publishers, 1994, pp. 595-603.

Advanced Design System 2011.01 - Numeric Components

174

 Spread

Description: Spread Spectrum Modulator
Library: Numeric, Communications
Class: SDFSpread

 Pin Inputs

Pin Name Description Signal Type

1 in input signal real

 Pin Outputs

Pin Name Description Signal Type

2 out input signal modulated by a 31-bit pseudo-noise spreading code real

 Notes/Equations

Spread is a direct-sequence spread spectrum modulator. Each input sample is1.
modulated with a 31-bit pseudo-noise spreading code.
See also, DeSpreader (numeric) and XmitSpread (numeric).2.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 9.1.

Advanced Design System 2011.01 - Numeric Components

175

 TelephoneChannel

Description: Telephone Channel Distortion Model
Library: Numeric, Communications
Class: SDFTelephoneChannel

 Parameters

Name Description Default Unit Type Range

LinearDistortionTaps taps values of the FIR filter that models linear
distortion

1.0 real
array

Noise additive white Gaussian noise distortion gain 0 real (-∞,
∞)

PhaseJitterFrequencyHz frequency of the phase jitter distortion to add to
signal, in Hertz

0.0 real [0.0,
∞)

PhaseJitterAmplitudeDeg phase jitter peak amplitude, in degrees 0.0 real (-∞,
∞)

FrequencyOffsetHz frequency offset distortion to add to the signal, in
Hertz

0.0 real [0.0,
∞)

SecondHarmonic proportion of the second harmonic of the input that
is added to the original signal

0.0 real (-∞,
∞)

ThirdHarmonic proportion of the third harmonic of the input that is
added to the original signal

0.0 real (-∞,
∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input signal real

 Pin Outputs

Pin Name Description Signal Type

2 out output signal real

 Notes/Equations

TelephoneChannel models the many types of distortion present in a telephone1.
channel (such as amplitude distortion and phase distortion). The sampling rate of the
channel is 8000 samples per second.
To model linear distortion, such as intersymbol interference, the input signal is2.
passed through an FIR filter with the taps set by LinearDistortionTaps. Phase jitter
and frequency offset distortions are then added to the signal.
Phase jitter is a consequence of the sensitivity of oscillators used for carrier
generation in single-sideband systems to fluctuations in power supply voltages.
Whereas frequency offset is peculiar to telephone channels and channels with

Advanced Design System 2011.01 - Numeric Components

176

Doppler shift.
Nonlinear distortion is modeled by adding the second and third harmonics to the3.
signal. Nonlinear distortion is due to imperfections in amplifiers and to tracking errors
between A/D and D/A converters.
Gaussian noise with zero mean and a variance set by Noise is added. Primarily, there4.
are four noise sources: quantization noise, thermal noise, impulse noise, and
crosstalk.
See also: AWGN_Channel (numeric), NoiseChannel (numeric), and5.
NonlinearDistortion (numeric).

 References

E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition, Kluwer1.
Academic Publishers, 1994, pp. 595-603.

Advanced Design System 2011.01 - Numeric Components

177

 WalshCoder

Description: Walsh code generator
Library: Numeric, Communications
Class: SDFWalshCoder

 Parameters

Name Description Default Unit Type Range

Type Walsh code type: Walsh, Hadamard, OVSF_3GPP Walsh enum

Length Code length 8 int [1,8192] †

Index Code index 0 int [0,Length-
1]

† The length used must be integer power of 2.

 Pin Outputs

Pin Name Description Signal Type

1 Out Output int

 Notes/Equations

This component is used to generate variable-length Walsh codes. Each firing, 1 token1.
is produced.
If Type = Walsh, the walsh codes are determined by:2.

where
N is the index of the walsh code, [0, Length-1]
N = n J-1 n J-2 ...n 1 n 0
K is the index of the chip in a walsh code, [0, Length-1]
K = k J-1 k J-2 ...k 1 k 0
J = log2Length
r 0 (n) = n J-1
r 1 (n) = n J-1 +n J-2
r 2 (n) = n J-2 +n J-3

Advanced Design System 2011.01 - Numeric Components

178

.

.

.
r J-1 (n) = n 1 +n 0
If Type = Hadamard, the walsh codes are determined by:

.

.

.

If Type = OVSF_3GPP, the walsh codes are determined by:

 References

3GPP Technical Specification TS 25.213 V3.0.0 "Spreading and modulation (FDD),"1.
October 1999.

Advanced Design System 2011.01 - Numeric Components

179

 XmitSpread

Description: Spread Spectrum Transmitter
Library: Numeric, Communications
Class: SDFXmitSpread

 Parameters

Name Description Default Unit Type Range

PulseDuration number of times to repeat each transmitted bit 1 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in input signal to transmit int

 Pin Outputs

Pin Name Description Signal Type

2 out transmitted signal int

 Notes/Equations

XmitSpread is a direct-sequence spread spectrum transmitter. Each input sample to1.
be transmitted is modulated with a 31-bit pseudo-noise spreading code.
The PulseDuration parameter determines how many times each transmitted sample is2.
repeated. Every input sample will result in 31 × PulseDuration transmitted samples.
See also: DeSpreader (numeric), RecSpread (numeric), and Spread (numeric).3.

 References

S. Hakin, Digital Communications, John Wiley & Sons, 1988, chapter 9.1.

Advanced Design System 2011.01 - Numeric Components

180

 Numeric Control Components
ActivatePath (numeric)
ActivatePath2 (numeric)
AsyncCommutator (numeric)
AsyncDistributor (numeric)
Bus (numeric)
BusMerge2 (numeric)
BusMerge3 (numeric)
BusMerge4 (numeric)
BusMerge5 (numeric)
BusMerge6 (numeric)
BusMerge7 (numeric)
BusMerge8 (numeric)
BusMerge9 (numeric)
BusSplit2 (numeric)
BusSplit3 (numeric)
BusSplit4 (numeric)
BusSplit5 (numeric)
BusSplit6 (numeric)
BusSplit7 (numeric)
BusSplit8 (numeric)
BusSplit9 (numeric)
Chop (numeric)
ChopVarOffset (numeric)
Commutator (numeric)
Commutator2 (numeric)
Commutator3 (numeric)
Commutator4 (numeric)
Delay (numeric)
DeMux (numeric)
DeMux2 (numeric)
Distributor (numeric)
Distributor2 (numeric)
Distributor3 (numeric)
Distributor4 (numeric)
DownSample (numeric)
DSampleWOffset (numeric)
EnableUDSample (numeric)
Fork (numeric)
Fork2 (numeric)
Fork3 (numeric)
Fork4 (numeric)
Fork5 (numeric)
Fork6 (numeric)
Fork7 (numeric)
Fork8 (numeric)
Fork9 (numeric)
IfElse (numeric)
InitDelay (numeric)
Mux (numeric)

Advanced Design System 2011.01 - Numeric Components

181

Mux2 (numeric)
Repeat (numeric)
Reverse (numeric)
Trainer (numeric)
Transpose (numeric)
UpSample (numeric)
VarDelay (numeric)

The Numeric Control components library contains components that control signal flow in a
data flow graph. These include signal bus merge, signal bus split, signal fork, signal
distributor, signal commutator, and more. All of these components accept as inputs any
signal class and output signals of the same class after the signal control operation is
performed.

Advanced Design System 2011.01 - Numeric Components

182

 ActivatePath

Description: Activate or remove succeeding blocks
Library: Numeric, Control
Class: SDFActivatePath

 Parameters

Name Description Default Unit Type Range

Activate "YES" to activate succeeding blocks: NO, YES YES enum

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

ActivatePath is used to activate or remove the succeeding blocks in a schematic1.
design.
ActivatePath operates at the graph level. When the Activate parameter is set to NO,2.
the succeeding block will be completely removed from the graph before the
simulation starts.
The Activate parameter cannot be swept.3.
ActivatePath does not match impedances for timed signals.4.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

183

 ActivatePath2

Description: Activate or remove succeeding blocks
Library: Numeric, Control
Class: SDFActivatePath2

 Parameters

Name Description Default Unit Type Range

Activate "YES" to activate succeeding blocks: NO, YES YES enum

 Pin Inputs

Pin Name Description Signal Type

1 input1 multiple anytype

2 input2 multiple anytype

 Pin Outputs

Pin Name Description Signal Type

3 output1 multiple anytype

4 output2 multiple anytype

 Notes/Equations

ActivatePath2 is used to activate or remove the succeeding blocks in a schematic1.
design.
ActivatePath2 operates at the graph level. When the Activate parameter is set to NO,2.
the succeeding block will be completely removed from the graph before the
simulation starts.
When activated (Activate = YES), output1 is connected to input1, output2 is3.
connected to input2.
The Activate parameter cannot be swept.4.
ActivatePath2 does not match impedances for timed signals.5.
For general information regarding numeric control components, refer to Numeric6.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

184

 AsyncCommutator

Description: Asynchronous Data Commutator
Library: Numeric, Control
Class: SDFAsyncCommutator
C++ Code: See doc/sp_items/SDFAsyncCommutator.html under your installation
directory.

 Parameters

Name Description Default Unit Type Range

BlockSizes block sizes read from each input 1 int array [1, ∞)†

† for each array element; number of elements in BlockSizes array must equal input bus
width

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

AsyncCommutator takes N input signal streams, where N is the input bus width, and1.
asynchronously combines them into one output signal stream. It consumes B i input

samples from input#i (i = 1, ... , N), where B i are the elements of the BlockSizes

parameter. It produces B 1 + B 2 + ... + B N samples on the output. The first B 1
samples at the output come from the first input, the next B 2 samples come from the

second input, and so on.
Example. Let's assume that three signals are connected to the input of2.
AsyncCommutator:

Advanced Design System 2011.01 - Numeric Components

185

input#1 a ramp with initial value 0.0 and step 1.0 (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, ...)

input#2 a ramp with initial value -0.5 and step -0.5 (-0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, ...)

input#3 a constant signal with value 3.1 (3.1, 3.1, 3.1, 3.1, 3.1, 3.1, ...)

Let's also assume that the BlockSizes parameter is set to "2 3 2".
Then the output signal will be: 0.0, 1.0, -0.5, -1.0, -1.5, 3.1, 3.1, 2.0, 3.0, -2.0, -
2.5, -3.5, 3.1, 3.1, 4.0, 5.0, -4.0, -4.5, -5.0, 3.1, 3.1, ...
For general information regarding numeric control components, refer to Numeric3.
Control Components (numeric).
See also: Commutator2 (numeric), Commutator3 (numeric), Commutator44.
(numeric), AsyncDistributor (numeric), Distributor2 (numeric), Distributor3
(numeric), Distributor4 (numeric).

Advanced Design System 2011.01 - Numeric Components

186

 AsyncDistributor

Description: Asynchronous Data Distributor
Library: Numeric, Control
Class: SDFAsyncDistributor
"C++ Code:* See doc/sp_items/SDFAsyncDistributor.html under your installation
directory.

 Parameters

Name Description Default Unit Type Range

BlockSizes block sizes written to each output 1 int array [1, ∞)†

† for each array element; number of elements in BlockSizes array must equal output bus
width.

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

AsyncDistributor takes one input signal stream and asynchronously splits it into N1.
output signal streams, where N is the output bus width. It consumes B 1 + B 2 + ...

+ B N samples from the input, where B i (i = 1, ... , N) are the elements of the

BlockSizes parameter. It produces B i output samples on output#i (i = 1, ... , N). The

samples on the first output are the first B 1 samples of the input, the samples on the

second output are the next B 2 samples of the input, and so on.

Example. Let's assume that the input to the AsyncDistributor is a ramp signal with2.
initial value 0 and step 1 (0, 1, 2, 3, 4, 5, ...). Let's also assume that the BlockSizes
parameter is set to "1 4 2". Then the three output signals are:
output#1 0, 7, 14, 21, ...

output#2 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25, ...

output#3 5, 6, 12, 13, 19, 20, 26, 27, ...

Advanced Design System 2011.01 - Numeric Components

187

For general information regarding numeric control components, refer to Numeric3.
Control Components (numeric).
See also: Distributor2 (numeric), Distributor3 (numeric), Distributor4 (numeric),4.
AsyncCommutator (numeric), Commutator2 (numeric), Commutator3 (numeric),
Commutator4 (numeric).

Advanced Design System 2011.01 - Numeric Components

188

 Bus

Description: Bus Expander to specified bus width
Library: Numeric, Control
Class: HOFBus
Derived From: Nop

 Parameters

Name Description Default Type Range

BusWidth BusWidth 1 int [2, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

The Bus component is used between two multiports and expands the input bus to the1.
output bus width specified.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

189

 BusMerge2

Description: Merge 2 inputs to form a bus of width 2.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

 Pin Outputs

Pin Name Description Signal Type

3 output multiple anytype

 Notes/Equations

The BusMerge2 component merges the top and bottom input busses into a single1.
bus. If the input bus widths are M1 and M2 and the output bus width is N, then N =
M1 + M2 is required. The first M1 outputs come from the first input bus, while the
next M2 outputs come from the second input bus. Both input signals must be of the
same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how this component is used can be accessed from the ADS3.
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open ,
BusMerge2_example.

Advanced Design System 2011.01 - Numeric Components

190

 BusMerge3

Description: Merge 3 inputs to form a bus of width 3.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

 Pin Outputs

Pin Name Description Signal Type

4 output multiple anytype

 Notes/Equations

BusMerge3 merges all 3 input busses into a single bus. If the input bus widths are1.
M1, M2, and M3 and the output bus width is N, then N = M1 + M2 + M3 is required.
The first M1 outputs come from the first input bus, while the next M2 outputs come
from the second input bus, and so on. All signal inputs must be of the same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how this component is used can be accessed from the ADS3.
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open ,
BusMerge3_example.

Advanced Design System 2011.01 - Numeric Components

191

 BusMerge4

Description: Merge 4 inputs to form a bus of width 4.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

 Pin Outputs

Pin Name Description Signal Type

5 output multiple anytype

 Notes/Equations

BusMerge4 merges all 4 input busses into a single bus. If the input bus widths are1.
M1, M2, M3, and M4 and the output bus width is N, then N = M1 + M2 + M3 + M4 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on. All signal inputs must be of the
same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how a BusMerge component is used can be accessed from3.
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

Advanced Design System 2011.01 - Numeric Components

192

 BusMerge5

Description: Merge 5 inputs to form a bus of width 5.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

5 input#5 anytype

 Pin Outputs

Pin Name Description Signal Type

6 output multiple anytype

 Notes/Equations

BusMerge5 merges all 5 input busses into a single bus. If the input bus widths are1.
M1, M2, M3, M4, and M5 and the output bus width is N, then N = M1 + M2 + M3 +
M4 + M5 is required. The first M1 outputs come from the first input bus, while the
next M2 outputs come from the second input bus, and so on. All signal inputs must
be of the same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how this component is used can be accessed from the ADS3.
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge5_example.

Advanced Design System 2011.01 - Numeric Components

193

 BusMerge6

Description: Merge 6 inputs to form a bus of width 6.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

5 input#5 anytype

6 input#6 anytype

 Pin Outputs

Pin Name Description Signal Type

7 output multiple anytype

 Notes/Equations

BusMerge6 merges all 6 input busses into a single bus. If the input bus widths are1.
M1, M2, ... , M6 and the output bus width is N, then N = M1 + M2 ... + M6 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on. All signal inputs must be of the
same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how a BusMerge component is used can be accessed from3.
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

Advanced Design System 2011.01 - Numeric Components

194

 BusMerge7

Description: Merge 7 inputs to form a bus of width 7.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

5 input#5 anytype

6 input#6 anytype

7 input#7 anytype

 Pin Outputs

Pin Name Description Signal Type

8 output multiple anytype

 Notes/Equations

BusMerge7 merges all 7 input busses into a single bus. If the input bus widths are1.
M1, M2, ... , M7 and the output bus width is N, then N = M1 + M2 ... + M7 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on.
All signal inputs must be of the same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how a BusMerge component is used can be accessed from3.
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

Advanced Design System 2011.01 - Numeric Components

195

 BusMerge8

Description: Merge 8 inputs to form a bus of width 8.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

5 input#5 anytype

6 input#6 anytype

7 input#7 anytype

8 input#8 anytype

 Pin Outputs

Pin Name Description Signal Type

9 output multiple anytype

 Notes/Equations

BusMerge8 merges all 8 input busses into a single bus. If the input bus widths are1.
M1, M2, ... , M8 and the output bus width is N, then N = M1 + M2 + ... + M8 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on.
All signal inputs must be of the same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how a BusMerge component is used can be accessed from3.
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

Advanced Design System 2011.01 - Numeric Components

196

 BusMerge9

Description: Merge 9 inputs to form a bus of width 9.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

5 input#5 anytype

6 input#6 anytype

7 input#7 anytype

8 input#8 anytype

9 input#9 anytype

 Pin Outputs

Pin Name Description Signal Type

10 output multiple anytype

 Notes/Equations

BusMerge9 merges all 9 input busses into a single bus. If the input bus widths are1.
M1, M2, ... , M9 and the output bus width is N, then N = M1 + M2 +, ... , + M9 is
required. The first M1 outputs come from the first input bus, while the next M2
outputs come from the second input bus, and so on.
All signal inputs must be of the same type.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
An example that shows how a BusMerge component is used can be accessed from3.
the ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusMerge2_example, BusMerge3_example, or BusMerge5_example.

Advanced Design System 2011.01 - Numeric Components

197

 BusSplit2

Description: Split input bus to 2 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

 Notes/Equations

BusSplit2 splits an input bus into two busses. If the input bus width is N, and the1.
output bus widths are M1 and M2, then N = M1 + M2 is required. The first M1 inputs
go to the first output bus, while the next M2 inputs go to the second output bus.
The input to the component is a bus, the bus on the lowest output pin always has a2.
bus width of 1, and is not settable by the user.
BusSplit2 splits the constituent signals of the input bus. It produces 2 single signal3.
outputs, both of the same type as the input.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how this component is used can be accessed from the ADS5.
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example.

Advanced Design System 2011.01 - Numeric Components

198

 BusSplit3

Description: Split input bus to 3 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

 Notes/Equations

BusSplit3 component splits an input bus into 3 busses. If the input bus width is N,1.
and the output bus widths are M1, M2, and M3 then N = M1 + M2 + M3 is required.
The first M1 inputs go to the first output bus, while the next M2 inputs go to the
second output bus and so on.
BusSplit3 splits the constituent signals of the input bus. It produces 3 single signal2.
outputs, all of the same type as the input.
The input to the component is a bus, the bus on the lowest output pin always has a3.
bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how this component is used can be accessed from the ADS5.
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit3_example.

Advanced Design System 2011.01 - Numeric Components

199

 BusSplit4

Description: Split input bus to 4 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

 Notes/Equations

BusSplit4 splits an input bus into 4 busses. If the input bus width is N, and the output1.
bus widths are M1, M2, M3 and M4, then N = M1 + M2 + M3 + M4 is required. The
first M1 inputs go to the first output bus, while the next M2 inputs go to the second
output bus, and so on.
BusSplit4 splits the constituent signals of the input bus. It produces 4 single signal2.
outputs, all of the same type as the input.
The input to the component is a bus, the bus on the lowest output pin always has a3.
bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how a BusSplit component is used can be accessed from the5.
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

Advanced Design System 2011.01 - Numeric Components

200

 BusSplit5

Description: Split input bus to 5 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

 Notes/Equations

BusSplit5 splits an input bus into 5 busses. If the input bus width is N, and the output1.
bus widths are M1, M2, M3, M4, and M5, then N = M1 + M2 + M3 + M4 + M5 is
required. The first M1 inputs go to the first output bus, while the next M2 inputs go to
the second output bus, and so on.
BusSplit5 splits the constituent signals of the input bus. It produces 5 single signal2.
outputs, all of the same type as the input.
The input to the component is a bus, the bus on the lowest output pin always has a3.
bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how this component is used can be accessed from the ADS5.
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit5_example.

Advanced Design System 2011.01 - Numeric Components

201

 BusSplit6

Description: Split input bus to 6 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

 Notes/Equations

BusSplit6 splits an input bus into 6 busses. If the input bus width is N, and the output1.
bus widths are M1, M2, M3, M4, M5, and M6, then N = M1 + M2 + M3 + M4 + M5 +
M6 is required. The first M1 inputs go to the first output bus, while the next M2
inputs go to the second output bus, and so on.
BusSplit6 splits the constituent signals of the input bus. It produces 6 single signal2.
outputs, all of the same type as the input.
The input to the component is a bus, the bus on the lowest output pin always has a3.
bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how a BusSplit component is used can be accessed from the5.
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

Advanced Design System 2011.01 - Numeric Components

202

 BusSplit7

Description: Split input bus to 7 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

8 output#7 anytype

 Notes/Equations

BusSplit7 splits an input bus into 7 busses. If the input bus width is N, and the output1.
bus widths are M1, M2, M3, M4, M5, M6, and M7 then N = M1 + M2 + M3 + M4 + M5
+ M6 + M7 is required. The first M1 inputs go to the first output bus, while the next
M2 inputs go to the second output bus, and so on.
BusSplit7 splits the constituent signals of the input bus. It produces 7 single signal2.
outputs, all of the same type as the input.
The input to the component is a bus, the bus on the lowest output pin always has a3.
bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how this component is used can be accessed from the ADS5.
Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit7_example.

Advanced Design System 2011.01 - Numeric Components

203

 BusSplit8

Description: Split input bus to 8 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

8 output#7 anytype

9 output#8 anytype

 Notes/Equations

BusSplit8 splits an input bus into 8 busses. If the input bus width is N, and the output1.
bus widths are M1, M2, ... , M8 then N = M1 + M2 + ... + M8 is required. The first
M1 inputs go to the first output bus, while the next M2 inputs go to the second
output bus, and so on.
BusSplit8 splits the constituent signals of the input bus. It produces 8 single signal2.
outputs, all of the same type as the input.
The input to the component is a bus, the bus on the lowest output pin always has a3.
bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how a BusSplit component is used can be accessed from the5.
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

Advanced Design System 2011.01 - Numeric Components

204

 BusSplit9

Description: Split input bus to 9 output buses.
Library: Numeric, Control
Class: HOFNop

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

8 output#7 anytype

9 output#8 anytype

10 output#9 anytype

 Notes/Equations

BusSplit9 splits an input bus into 9 busses. If the input bus width is N, and the output1.
bus widths are M1, M2, ... , M9 then N = M1 + M2 + ... + M9 is required. The first
M1 inputs go to the first output bus, while the next M2 inputs go to the second
output bus, and so on.
BusSplit9 splits the constituent signals of the input bus. It produces 9 single signal2.
outputs, all of the same type as the input.
The input to the component is a bus, the bus on the lowest output pin always has a3.
bus width of 1, and is not settable by the user.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).
An example that shows how a BusSplit component is used can be accessed from the5.
ADS Main window: File > Open > Example > PtolemyDocExamples >
Numeric_Control_wrk; from the Schematic window, choose File > Open,
BusSplit2_example, BusSplit3_example, BusSplit5_example, or BusSplit7_example.

Advanced Design System 2011.01 - Numeric Components

205

 Chop

Description: Chop input data into blocks
Library: Numeric, Control
Class: SDFChop
C++ Code: See doc/sp_items/SDFChop.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

nRead number of data items read 128 int [1, ∞)

nWrite number of data items written 64 int [1, ∞)

Offset start of output block relative to start of input block 0 int (-∞, ∞)

UsePastInputs use previously read inputs: NO, YES YES enum

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

The Chop component reads a block of nRead samples from its input and produces a1.
block of nWrite samples at its output. Depending on the parameter settings, the
output block can have all or part of the samples in the input block, zeros could be
appended or prepended, and even samples from the previously read input blocks can
be reused.
The Offset parameter defines where in the output block of samples the first (oldest)2.
input sample is output.

If Offset is ≤ 0, the first |Offset| input samples are discarded and the (|Offset|
+ 1)-th input sample is output as the first output sample (the UsePastInputs
parameter is ignored)
If Offset > 0, the first input sample is output as the (Offset + 1)-th output
sample. The first Offset output samples are:

0, if UsePastInputs is set to NO
the last Offset samples from the previous blocks read, if UsePastInputs is
set to YES

The following tables summarize the behavior of this component.3.
If nRead ≥ nWrite

Advanced Design System 2011.01 - Numeric Components

206

Case Offset UsePastInputs nWrite ≤
nRead − |
Offset|

Output

1 (−∞, −
nRead]

NO or YES will always
be FALSE

all zeros

2 (−
nRead,
0]

NO or YES TRUE discard the first |Offset| input samples, output the next
nWrite input samples

3 (−
nRead,
0]

NO or YES FALSE discard the first |Offset| input samples, output the next
(nRead − |Offset|) input samples followed by (nWrite −
(nRead − |Offset|)) zeros

4 (0,
nWrite)

NO TRUE or
FALSE

output Offset zeros followed by the first (nWrite − Offset
) input samples

5 (0,
nWrite)

YES TRUE or
FALSE

output the last Offset samples of the previously read
input block followed by the first (nWrite − Offset) input
samples

6 [nWrite,
∞)

NO TRUE or
FALSE

all zeros

7 [nWrite,
∞)

YES TRUE or
FALSE

output from the (nRead − Offset + 1)-th to (nRead −
Offset + nWrite)-th samples of the previously read input
block (for the first block the previous block is assumed
to be all zeros)

If nRead < nWrite

Case Offset UsePastInputs nRead ≤
nWrite − |
Offset|

Output

8 (−∞, −
nRead]

NO or YES TRUE or
FALSE

all zeros

9 (−nRead
, 0]

NO or YES TRUE or
FALSE

discard the first |Offset| input samples, output the
next (nRead − |Offset|) input samples followed by (
nWrite − (nRead − |Offset|)) zeros

10 (0,
nWrite)

NO TRUE output Offset zeros followed by the nRead input
samples followed by (nWrite − nRead − Offset) zeros

11 (0,
nWrite)

NO FALSE output Offset zeros followed by the first (nWrite −
Offset) input samples

12 (0,
nWrite)

YES TRUE output the last Offset samples of the previously read
input block followed by the nRead input samples
followed by (nWrite − nRead − Offset) zeros

13 (0,
nWrite)

YES FALSE output the last Offset samples of the previously read
input block(s) followed by the first (nWrite − Offset)
input samples

14 [nWrite,
∞)

NO will always be
FALSE

all zeros

15 [nWrite,
∞)

YES will always be
FALSE

output the last nWrite samples of the previously read
input block(s) (for the first block the previous blocks
are assumed to be all zeros)

Here are some examples. In all of these examples the input is assumed to be a ramp4.
signal with initial value of 1 and step 1 (1, 2, 3, 4, 5, 6, ...).

Advanced Design System 2011.01 - Numeric Components

207

Case nRead nWrite Offset UsePastInputs Output

1 10 5 -10 (or
smaller)

NO or YES 0, 0, 0, 0, 0, 0, ...

2 10 3 -5 NO or YES 6, 7, 8, 16, 17, 18, 26, 27, 28, ...

3 10 5 -7 NO or YES 8, 9, 10, 0, 0, 18, 19, 20, 0, 0, 28, 29, 30, 0, 0, ...

4 10 5 2 NO 0, 0, 1, 2, 3, 0, 0, 11, 12, 13, 0, 0, 21, 22, 23, ...

5 10 5 2 YES 0, 0, 1, 2, 3, 9, 10, 11, 12, 13, 19, 20, 21, 22, 23,
...

6 10 5 5 (or
bigger)

NO 0, 0, 0, 0, 0, 0, ...

7 10 5 5 YES 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 16, 16, 18, 19, 20, ...

7 10 5 7 YES 0, 0, 0, 0, 0, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, ...

8 5 10 -5 (or
smaller)

NO or YES 0, 0, 0, 0, 0, 0, ...

9 5 10 -3 NO or YES 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 0, 0, 0,
0, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, ...

10 5 10 3 N0 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 0,
0, 0, 0, 0, 11, 12, 13, 14, 15, 0, 0, ...

11 5 10 7 N0 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 6, 7,
8, 0, 0, 0, 0, 0, 0, 0, 11, 12, 13, ...

12 5 10 3 YES 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 3, 4, 5, 6, 7, 8, 9, 10, 0,
0, 8, 9, 10, 11, 12, 13, 14, 15, 0, 0, ...

13 5 10 7 YES 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 1, 2, 3, 4, 5, 6, 7,
8, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...

14 5 10 10 (or
bigger)

NO 0, 0, 0, 0, 0, 0, ...

15 3 5 5 YES 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 7, 8,
9, ...

Common uses of the Chop component include:5.
Discard samples from the beginning of a block of data: Offset should be set to −N
, where N is the number of samples that need to be discarded and nWrite should
be set to nRead − N.
Discard samples from the end of a block of data: Offset should be set to 0 and
nWrite should be set to nRead − N, where N is the number of samples that need
to be discarded.
Discard samples from both the beginning and the end of a block of data: Offset
should be set to −N b, where N b is the number of samples that need to be

discarded from the beginning of the block and nWrite should be set to nRead −
N b − N e, where N e is the number of samples that need to be discarded from

the end of the block.
Prepend zeros to a block of data: Offset should be set to N , where N is the
number of zeros to be prepended, UsePastInputs should be set to NO, and
nWrite should be set to nRead + N.
Append zeros to a block of data: Offset should be set to 0 and nWrite should be
set to nRead + N, where N is the number of zeros to be appended.
Prepend and append zeros to a block of data: Offset should be set to N p , where

N p is the number of zeros to be prepended, UsePastInputs should be set to NO,

and nWrite should be set to nRead + N p + N a, where N a is the number of

zeros to be appended.

Advanced Design System 2011.01 - Numeric Components

208

Break an input stream of samples in blocks of size N b with N o overlapping

samples: nRead should be set to N b − N o, nWrite should be set to N b, Offset

should be set to N o, and UsePastInputs should be set to YES.

For general information regarding numeric control components, refer to Numeric6.
Control Components (numeric).
See also: ChopVarOffset (numeric).7.

Advanced Design System 2011.01 - Numeric Components

209

 ChopVarOffset

Description: Chop input data into blocks with offset control
Library: Numeric, Control
Class: SDFChopVarOffset
Derived: From Chop
C++ Code: See doc/sp_items/SDFChopVarOffset.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

nRead number of data items read 128 int [1, ∞)

nWrite number of data items written 64 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

2 offsetCntrl int

 Pin Outputs

Pin Name Description Signal Type

3 output anytype

 Notes/Equations

ChopVarOffset has the same functionality as the Chop (numeric) component except1.
that the Offset parameter is determined at run time by a control input (offsetCntrl)
and the UsePastInputs parameter is assumed to be NO.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
See also: Chop (numeric)3.

Advanced Design System 2011.01 - Numeric Components

210

 Commutator

Description: Synchronous Data Commutator
Library: Numeric, Control
Class: SDFCommutator
C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

This component takes N input streams and synchronously combines them into one1.
output stream. It consumes B input data packets from each input (where B is
BlockSize), and produces N × B data packets on the output.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

211

 Commutator2

Description: 2-Input Synchronous Data Commutator
Library: Numeric, Control
Class: SDFCommutator
C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

 Pin Outputs

Pin Name Description Signal Type

3 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

This component takes 2 input streams and synchronously combines them into one1.
output stream. It accepts 2 single signals, both of the same type.
It consumes B input data packets from each input (where B is BlockSize), and
produces 2B data packets on the output. The first B data packets on the output come
from the first input, the next B data packets from the next input.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

212

 Commutator3

Description: 3-Input Synchronous Data Commutator
Library: Numeric, Control
Class: SDFCommutator
C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

 Pin Outputs

Pin Name Description Signal Type

4 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

Commutator3 takes 3 input streams and synchronously combines them into one1.
output stream. It accepts 3 single signals, all of the same type.
It consumes B input data packets from each input (where B is BlockSize), and
produces 3 B data packets on the output. The first B data packets on the output
come from the first input, the next B data packets from the next input, and so on.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

213

 Commutator4

Description: 4-Input Synchronous Data Commutator
Library: Numeric, Control
Class: SDFCommutator
C++ Code: See doc/sp_items/SDFCommutator.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

 Pin Outputs

Pin Name Description Signal Type

5 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

Commutator4 takes 4 input streams and synchronously combines them into one1.
output stream. It accepts 4 single signals, all of the same type.
It consumes B input data packets from each input (where B is BlockSize), and
produces 4 B data packets on the output. The first B data packets on the output
come from the first input, the next B data packets from the next input, and so on.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

214

 Delay

Description: Delay Component
Library: Numeric, Control
Class: HOFDelay
Derived From: Nop

 Parameters

Name Description Default Type Range

N N 1 int [0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

This component delays input tokens from output by N samples. The initial N output1.
tokens have a null value.
For timed signals, use the DelayRF component.2.
For general information regarding numeric control components, refer to Numeric3.
Control Components (numeric).
The N parameter cannot be swept.4.

Advanced Design System 2011.01 - Numeric Components

215

 DeMux

Description: Data demultiplexer
Library: Numeric, Control
Class: SDFDeMux
C++ Code: See doc/sp_items/SDFDeMux.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of data items in a block 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

2 control int

 Pin Outputs

Pin Name Description Signal Type

3 output multiple anytype

 Notes/Equations

DeMux demultiplexes one input onto any number of output streams. DeMux1.
consumes B packets of data from the input, where B is the BlockSize. These B data
packets are copied to exactly one output, determined by the control input. The other
outputs get a zero of the appropriate type.
Integers 0 through N - 1 are accepted at the control input, where N is the number of2.
outputs. If the control input is outside this range, all outputs get zero.
For general information regarding numeric control components, refer to Numeric3.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

216

 DeMux2

Description: 2-Output Data Demultiplexer
Library: Numeric, Control
Class: SDFDeMux
C++ Code: See doc/sp_items/SDFDeMux.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of data items in a block 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

2 control int

 Pin Outputs

Pin Name Description Signal Type

3 output#1 anytype

4 output#2 anytype

 Notes/Equations

DeMux2 directs one input to either of two outputs based on the logic state (0 or 1) of1.
the control input. DeMux2 produces 2 single signal outputs, all of the same type as
the input.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

217

 Distributor

Description: Synchronous Data Distributor
Library: Numeric, Control
Class: SDFDistributor
C++ Code: See doc/sp_items/SDFDistributor.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

Distributor synchronously splits one input stream into N output streams. It consumes1.
N × B input particles (where B = BlockSize) and sends the first B particles to the first
output, the next B particles to the next output, and so on. It produces a single signal
output of the same type as input.
The number of output streams, N, is equal to the number of other component input
pins connected to the Distributor output pin. For an ordered distribution of output
streams to input pins, a BusSplit[2, ... , 9] component can be connected to the
Distributor output pin and other component input pins connected to the BusSplit[2,
... , 9] component output pins.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

218

 Distributor2

Description: 2-Output Synchronous Data Distributor
Library: Numeric, Control
Class: SDFDistributor
C++ Code: See doc/sp_items/SDFDistributor.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

 Notes/Equations

Distributor2 synchronously splits one input stream into 2 output streams. It1.
consumes 2 × B input particles (where B = BlockSize) and sends the first B particles
to the first output and the next B particles to the second output. It produces 2 single
signal outputs, both of the same type as the input.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

219

 Distributor3

Description: 3-Output Synchronous Data Distributor
Library: Numeric, Control
Class: SDFDistributor
C++ Code: See doc/sp_items/SDFDistributor.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

 Notes/Equations

Distributor3 synchronously splits one input stream into 3 output streams. It1.
consumes 3 × B input particles (where B = BlockSize) and sends the first B particles
to the first output, the second B particles to the second output, and the third B
particles to the third output. It produces 3 single signal outputs, all of the same type
as the input.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

220

 Distributor4

Description: 4-Output Synchronous Data Distributor
Library: Numeric, Control
Class: SDFDistributor
C++ Code: See doc/sp_items/SDFDistributor.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize Number of particles in a block. 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

 Notes/Equations

Distributor4 synchronously splits one input into 4 output streams. It consumes 4 × B1.
input particles (where B = BlockSize) and sends the first B particles to the first
output, the second B particles to the second output, the third B particles to the third
output, and the fourth B particles to the fourth output. It produces 4 single signal
outputs, all of the same type as the input.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

221

 DownSample

Description: Data Down Sampler
Library: Numeric, Control
Class: SDFDownSample
C++ Code: See doc/sp_items/SDFDownSample.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Factor downsample factor 2 int [1, ∞)

Phase downsample phase 0 int [0,Factor-1]

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

Down-sampling is also referred to as decimation. This component reduces the1.
sampling rate of its input signal by an integer Factor ratio. Decimation is performed
by keeping one sample at the output for every Factor samples at the input.
This component does not have a built-in lowpass filter before decimation. To avoid2.
aliasing, it may be necessary for the designer to ensure that the input signal
bandwidth is appropriately limited by connecting a lowpass filter at the input.
Phase tells which sample to output: if Phase = 0, the most recent sample is the3.
output; if Phase=Factor − 1 the oldest sample is the output. y[n] = x[Factor × (n +
1) − (Phase − 1)], where n is the output sample number, y is the output, and x is
the input. (Note that phase has the opposite sense of the Phase parameter in the
UpSample component, but the same sense as the Phase parameter in the FIR
component.)
For timed signals, use the DSampleRF (timed) component.4.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

222

 DSampleWOffset

Description: Down sample with detected delay
Library: Numeric, Control
Class: SDFDSampleWOffset

 Parameters

Name Description Default Unit Type Range

SampPerChip Number of samples fer chip 8 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 Input Input anytype

2 Offset Offset int

 Pin Outputs

Pin Name Description Signal Type

3 Output Output anytype

 Notes/Equations

This model downsamples RF received data using RF channel delay information. The1.
first input is the complex envelope data that will be downsampled; the second input
is the RF channel delay detected by DelayEstimator. The downsampled complex
envelope signal is output.
The schematic for this subnetwork is shown in DSampleWOffset Schematic. Two
Delay models are inserted in the subnet based on the RF feedback loop reqirement.
The C++ model DSWOffset performs the downsample for the signal with an arbitrary
delay.
This is a multirate component.2.
If SampPerChip > 1, the component downsamples the signal with RF channel delay
using SampPerChip as the downsample ratio.
If SampPerChip = 1, the input signal is passed to the output with a delay and
downsampling is not performed.
To downsample an RX signal with an arbitrary delay through an RF path, component3.
sampling time is synchronized with the delayed TX signal start time.

 DSampleWOffset Schematic

Advanced Design System 2011.01 - Numeric Components

223

 References

M. Jeruchim, P. Balaban and K. Shanmugan, "Simulation of Communication System,"1.
Plenum Press, New York and London, 1992.

Advanced Design System 2011.01 - Numeric Components

224

 EnableUDSample

Description: Data Up/Down Sampler
Library: Numeric, Control
Class: SDFEnableUDSample

 Parameters

Name Description Default Unit Type Range

Enable enable the up/down sampling: NO, YES NO enum

USample upsample ratio 1 int [1, ∞)

DSample downsample ratio 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal anytype

 Pin Outputs

Pin Name Description Signal Type

2 output output signal anytype

 Notes/Equations

EnableUDSample can be used to resample the input signal at a new rate. Resampling1.
occurs only when the Enable parameter is set to YES.
When USample is greater than 1 upsampling will occur. Upsampling is done as2.
sample and hold (repeat input sample USample times).
When DSample is greater than 1 downsampling will occur. The downsampling phase
is DSample-1, that is, the first out of every DSample samples is selected and the
subsequent DSample-1 samples are discarded.
If USample is smaller than DSample loss of information may occur.
For general information regarding numeric control components, refer to Numeric3.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

225

 Fork

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork
Derived From: Base

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

Fork is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork must be explicitly inserted by the
designer to avoid ambiguity about the location of the delay.

Fork is typically used with numeric signals; one or more SplitterRF components3.
should be used with timed signals.
When a Fork is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

226

 Fork2

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

 Notes/Equations

Fork2 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork2 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork2 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork2 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork2 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork2 connects a single output port of a component to 2 input ports of other3.
components. It has 2 single output ports rather than one multi-port output.
Fork2 is typically used with numeric signals; SplitterRF should be used with timed4.
signals.
When Fork2 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

227

 Fork3

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

 Notes/Equations

Fork3 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork3 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork3 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork3 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork3 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork3 connects a single output port of a component to 3 input ports of other3.
components. It has 3 single output ports rather than one multi-port output.
Fork3 is typically used with numeric signals; SplitterRF components should be used4.
with timed signals.
When Fork3 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

228

 Fork4

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

 Notes/Equations

Fork4 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork4 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork4 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork4 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork4 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork4 connects a single output port of a component to 4 input ports of other3.
components. It has 4 single output ports rather than one multi-port output.
Fork4 is typically used with numeric signals; SplitterRF components should be used4.
with timed signals.
When Fork4 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

229

Advanced Design System 2011.01 - Numeric Components

230

 Fork5

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

 Notes/Equations

Fork5 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork5 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork5 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork5 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork5 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork5 connects a single output port of a component to 5 input ports of other3.
components. It has 5 single output ports rather than one multi-port output.
Fork5 is typically used with numeric signals; SplitterRF components should be used4.
with timed signals.
When Fork5 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

231

Advanced Design System 2011.01 - Numeric Components

232

 Fork6

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

 Notes/Equations

Fork6 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork6 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork6 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork6 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork6 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork6 connects a single output port of a component to 6 input ports of other3.
components. It has 6 single output ports rather than one multi-port output.
Fork6 is typically used with numeric signals; SplitterRF components should be used4.
with timed signals.
When Fork6 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric5.

Advanced Design System 2011.01 - Numeric Components

233

Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

234

 Fork7

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

8 output#7 anytype

 Notes/Equations

Fork7 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork7 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork7 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork7 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork7 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork7 connects a single output port of a component to 7 input ports of other3.
components. It has 7 single output ports rather than one multi-port output.
Fork7 is typically used with numeric signals; SplitterRF components should be used4.
with timed signals.
When Fork7 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.

Advanced Design System 2011.01 - Numeric Components

235

For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

236

 Fork8

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

8 output#7 anytype

9 output#8 anytype

 Notes/Equations

Fork8 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork8 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork8 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork8 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork8 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork8 connects a single output port of a component to 8 input ports of other3.
components. It has 8 single output ports rather than one multi-port output.
Fork8 is typically used with numeric signals; SplitterRF components should be used4.
with timed signals.
When Fork8 is forced to connect with a timed signal, it assumes infinite equivalent

Advanced Design System 2011.01 - Numeric Components

237

input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

238

 Fork9

Description: Copy input particles to each output.
Library: Numeric, Control
Class: HOFFork

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output#1 anytype

3 output#2 anytype

4 output#3 anytype

5 output#4 anytype

6 output#5 anytype

7 output#6 anytype

8 output#7 anytype

9 output#8 anytype

10 output#9 anytype

 Notes/Equations

Fork9 is generally used to explicitly connect a single output port of a component to1.
multiple input ports of other components. Fork9 cannot be used to connect a multi-
port output of a component to multiple multi-port inputs of other components. For
example, the input of the Fork9 component cannot be connected to a bus of width >
1.
In many data flow graphs, the explicit use of this component is optional. If not used,2.
it will be automatically inserted when multiple inputs are connected to the same
output in a schematic.
Automatically inserted Fork9 components are not always desirable:

When multi-port inputs or outputs are used, auto-forking can cause problems-
for example, two outputs and several inputs on the same net.
When there is a delay on one of the arcs, Fork9 must be explicitly inserted by
the designer to avoid ambiguity about the location of the delay.

Fork9 connects a single output port of a component to 9 input ports of other3.
components. It has 9 single output ports rather than one multi-port output.
Fork9 is typically used with numeric signals; SplitterRF components should be used4.
with timed signals.

Advanced Design System 2011.01 - Numeric Components

239

When Fork9 is forced to connect with a timed signal, it assumes infinite equivalent
input resistance and zero equivalent output resistance.
For general information regarding numeric control components, refer to Numeric5.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

240

 IfElse

Description: Map one of two blocks
Library: Numeric, Control
Class: HOFIfElse
Derived From: Map

 Parameters

Name Description Default Type Range

Condition Select 'False' or 'True' path based on the Condition: False,
True

True enum False or True

 Pin Inputs

Pin Name Description Signal Type

1 input Input to the IfElse component multiple
anytype

2 true_mapoutput Connect to the output pin, if any, of the design path that will be selected
if Condition evaluates to TRUE

multiple
anytype

3 false_mapoutput Connect to the output pin, if any, of the design path that will be selected
if Condition evaluates to FALSE

multiple
anytype

 Pin Outputs

Pin Name Description Signal Type

4 true_mapinput Connect to the input pin, if any, of the design path that will be selected if
Condition evaluates to TRUE

multiple
anytype

5 output Output from the IfElse component multiple
anytype

6 false_mapinput Connect to the input pin, if any, of the design path that will be selected if
Condition evaluates to FALSE

multiple
anytype

 Notes/Equations

IfElse can be used to select one of the two components, the one in the true path or1.
the one in the false path, and insert it in the signal flow path. If more than one
component need to be connected to the true/false path these must be placed in a
subnetwork and the subnetwork connected to the path.
The Condition parameter determines which path will be selected. If Condition is set to
False, then the false path is selected; if Condition is set to True, then the true path is
selected; if Condition is set to a variable or expression, the variable or expression
must have a value of 0 or 1 (0 is treated as False and 1 is treated as True). Other
values will result in a simulation error.
IfElse is similar to the Mux2 component with some differences as well as advantages2.

Advanced Design System 2011.01 - Numeric Components

241

and disadvantages. Equivalent Schematics Using IfElse and Mux2 shows how IfElse
and Mux2 can be used to generate equivalent schematics; these schematics will
produce identical results assuming Condition is 0 or 1.
The important difference between IfElse and Mux2 is that IfElse operates at the
graph level (which means that the component not selected by IfElse is completely
removed from the graph before the simulation starts), whereas Mux2 operates at the
signal level (which means that both input signals of Mux2 must be generated, then
Mux2 selects one of them).
The advantage of operating at the graph level is that because one of the two
components connected to the true or false path of IfElse is completely removed from
the graph, only the selected one is simulated thus saving computing resources. On
the other hand, the advantage of Mux2 is that the control signal that selects which of
the two input signals will be selected can change during the simulation. In fact, this
(a varying control signal) is the most typical use of Mux2. Having a constant control
signal, as shown in Equivalent Schematics Using IfElse and Mux2, is not a typical use
of Mux2 (the purpose of the example in Equivalent Schematics Using IfElse and Mux2
is to help explain similarities/differences between IfElse and Mux2 and not to provide
a typical example for Mux2).
Another difference between the two schematics in Equivalent Schematics Using IfElse
and Mux2 is that the Condition parameter of IfElse is not sweepable, whereas the
Level parameter of the ConstInt component (although constant during the
simulation) is sweepable.

 Equivalent Schematics Using IfElse and Mux2

Advanced Design System 2011.01 - Numeric Components

242

Although the Condition parameter of IfElse cannot be swept, the parameters of the3.
components in the true or false path can be swept; for this, the expressions setting
the values of these parameters must be enclosed in double quotes. For example, if a
Repeat component is connected to the true or false path of IfElse and there is a
swept variable called Rate, in order to use this variable to set the NumTimes
parameter of Repeat the assignment should be done as NumTimes = "Rate" or
NumTimes = "3 × Rate + 1".
If more complicated expressions using functions such as sin(), log(), or sqrt() need to
be used, then an intermediate variable must be defined. For the example described
above, in order to set NumTimes to int(sqrt(Rate) + 3 × log(Rate)) an intermediate
variable (RepeatFactor for example) must be defined in a VAR block as RepeatFactor
= int(sqrt(Rate) + 3 × log(Rate)). Then the NumTimes parameter of Repeat must
be set as NumTimes = "RepeatFactor".
The above examples are exceptions to how expressions using swept variables are
used to assign values to component parameters. These exceptions apply only to the
parameters of the components connected to the true or false paths of IfElse.
IfElse is intended for use with numeric components. Timed components can be4.
connected to the true or false path of IfElse but any series or shunt resistors
connected outside IfElse that could form resistor networks with the resistors inside
the timed components will not be correctly evaluated.
Connecting Analog/RF subnetworks to the true or false path of IfElse is not
supported. The simulator will not error out but the results of the simulation are not
guaranteed to be correct.
To access examples that show how this component is used: from the Main window,5.
choose File > Open > Example > PtolemyDocExamples > Numeric_Control_wrk;
from the Schematic window, choose File > Open, IfElse_Example1, IfElse_Example2,

Advanced Design System 2011.01 - Numeric Components

243

or IfElse_Example3. More examples showing the usage of IfElse are the Bits and the
TkConstellation subnetworks (place these components in a schematic window and
push into them).
For general information regarding numeric control components, refer to Numeric6.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

244

 InitDelay

Description: Initial Delay Component
Library: Numeric, Control
Class: HOFInitDelay
Derived From: Delay

 Parameters

Name Description Default Type Range

N N 1 int [0, ∞)

InitialDelays StringArray containing a list of intial delay tokens. 0 string array

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

InitDelay delays input tokens from output by N sets of initial delay tokens.1.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).
The N parameter cannot be swept.3.

Advanced Design System 2011.01 - Numeric Components

245

 Mux

Description: Data multiplexer
Library: Numeric, Control
Class: SDFMux
C++ Code: See doc/sp_items/SDFMux.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of data items in a block 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 control int

2 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

3 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

Mux multiplexes any number of inputs onto one output stream. At each firing,1.
BlockSize data packets are consumed on each input, but only one of these blocks of
data is copied to the output, as determined by the control input. Integers from 0
through N - 1 are accepted at the control input, where N is the number of inputs. If
the control input is outside this range, an error is signaled.
Use of a BusMerge component at input 2 of the Mux is recommended to ensure that
the order of inputs is not ambiguous. When a BusMerge component is used, control
inputs 0 through N-1 select inputs at pin 1 through N of the BusMerge, respectively.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

246

 Mux2

Description: 2-Input Data Multiplexer
Library: Numeric, Control
Class: SDFMux
C++ Code: See doc/sp_items/SDFMux.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of data items in a block 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 control int

2 input#1 anytype

3 input#2 anytype

 Pin Outputs

Pin Name Description Signal Type

4 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

Mux2 multiplexes 2 inputs onto one output stream. At each firing, BlockSize data1.
packets are consumed on each single signal input pin. Only one of these blocks of
data is copied to the output; the one copied is determined by the control input.
Integers 0 to 1 are accepted at the control input; 0 selects the input at pin 2; 1
selects the input at pin 3.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

247

 Repeat

Description: Data repeater
Library: Numeric, Control
Class: SDFRepeat
C++ Code: See doc/sp_items/SDFRepeat.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

NumTimes repetition factor 2 int [1, ∞)

BlockSize number of data items in a block 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

Repeat repeats each input data packet the specified number of times (NumTimes) on1.
the output. Note that this is a sample rate change, and therefore affects the number
of invocations of downstream components.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

248

 Reverse

Description: Data reverser
Library: Numeric, Control
Class: SDFReverse
C++ Code: See doc/sp_items/SDFReverse.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

N number of data items read and written 64 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

On each execution, Reverse reads a block of N samples and writes the samples1.
backwards.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

249

 Trainer

Description: Initial Sample Trainer
Library: Numeric, Control
Class: SDFTrainer
C++ Code: See doc/sp_items/SDFTrainer.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

TrainLength number of training samples to use 100 int [0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 train anytype

2 decision anytype

 Pin Outputs

Pin Name Description Signal Type

3 output anytype

 Notes/Equations

Note
Use of this component with timed signals having different characterization frequencies is not
recommended and can lead to unexpected results.

Trainer passes the value of the train input to the output for the first TrainLength1.
samples, then passes the decision input to the output. This component is designed
for use with adaptive equalizers that require a training sequence at startup, but it can
be used whenever one sequence is used during a startup phase, and another
sequence after that.
During the startup phase, the decision inputs are discarded. After the startup phase,2.
the train inputs are discarded.
For general information regarding numeric control components, refer to Numeric3.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

250

 Transpose

Description: Data transposer
Library: Numeric, Control
Class: SDFTranspose
C++ Code: See doc/sp_items/SDFTranspose.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

SamplesInaRow number of input samples constituting a row 8 int [1, ∞)

NumberOfRows number of rows in the input matrix 8 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

Transpose transposes a rasterized matrix (one that is read as a sequence of data1.
items, row by row, and written in the same form). The number of data items
produced and consumed equals the product of SamplesInaRow and NumberOfRows.
For general information regarding numeric control components, refer to Numeric2.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

251

 UpSample

Description: Data Up Sampler
Library: Numeric, Control
Class: SDFUpSample
C++ Code: See doc/sp_items/SDFUpSample.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Factor number of samples produced 2 int [1, ∞)

Phase where to put the input in the output block 0 int [0, Factor-1]

Fill value to fill the output block 0.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

 Pin Outputs

Pin Name Description Signal Type

2 output anytype

 Notes/Equations

The Upsample component upsamples by a given Factor, giving inserted samples the1.
value Fill. The Phase parameter tells where to put the sample in an output block. A
Phase of 0 indicates to output the input sample first followed by the inserted
samples. The maximum Phase is Factor − 1. y[Factor × n] = x[n + Phase], where n
is the input sample number, y is the output, x is the input.
Although the Fill parameter is a floating-point (real) number, if the input is of some2.
other type, such as complex, then Fill data will be obtained by casting Fill to the
appropriate type.
For timed signals, use the USampleRF component.3.
The USampleRF component has options for specifying how the inserted values will be
generated: SampleAndHold, ZeroInsertion, PolyPhaseFilter, Linear.
The UpSample component implements the ZeroInsertion option only, assuming Fill is
set to 0. While UpSample cannot implement other USampleRF options, other
components in the Numeric library can be used to implement them.

The SampleAndHold option can be implemented by the Repeat component. The
NumTimes parameter of the Repeat component should be set to the upsampling
factor and the BlockSize parameter should be set to 1. Equivalence of Repeat
and SampleAndHold Option of USampleRF shows how to set the Repeat and the
USampleRF components to get equivalent results.

Advanced Design System 2011.01 - Numeric Components

252

 Equivalence of Repeat and SampleAndHold Option of USampleRF

The PolyPhaseFilter option can be implemented by the RaisedCosine component.
Parameters of the RaisedCosine component should be set as follows: Decimation
= 1, DecimationPhase = 0, Interpolation = N, Length = 20 × N, SymbolInterval
= N, ExcessBW = a, and SquareRoot = 0 (where N is the USampleRF Ratio
parameter value and a is the USampleRF ExcessBW parameter value).
Equivalence of RaisedCosine and PolyPhaseFilter Option of USampleRF. shows
how to set the RaisedCosine and the USampleRF components to get equivalent
results.

 Equivalence of RaisedCosine and PolyPhaseFilter Option of USampleRF.

The Linear option can be implemented by the FIR component. FIR parameters
should be set as follows: Taps = "0 (1/N) (2/N) ... ((N-1)/N) 1 ((N-1)/N) ...
(1/N)", Decimation = 1, DecimationPhase = 0, Interpolation = N (where N is the
USampleRF Ratio parameter value). (Note that the open and close quotes in the
Taps parameter value are required.) Equivalence of FIR and Linear Option of
USampleRF shows how to set the FIR and the USampleRF components to get
equivalent results.

 Equivalence of FIR and Linear Option of USampleRF

Advanced Design System 2011.01 - Numeric Components

253

For completeness, Equivalence of UpSample and ZeroInsertion Option of
USampleRF shows the equivalance of UpSample and the ZeroInsertion option
USampleRF.

 Equivalence of UpSample and ZeroInsertion Option of USampleRF

For general information regarding numeric control components, refer to Numeric4.
Control Components (numeric).

Advanced Design System 2011.01 - Numeric Components

254

 VarDelay

Description: Variable Delay
Library: Numeric, Control
Class: SDFVarDelay

 Parameters

Name Description Default Unit Type Range

MaxDelay Maximum delay 10 int [0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input anytype

2 control int

 Pin Outputs

Pin Name Description Signal Type

3 output anytype

 Notes/Equations

This component implements a varying delay by delaying the input signal by as many
samples as specified by the signal applied to the control pin. The maximum delay needs to
be specified in the MaxDelay parameter.
The component uses an internal buffer of MaxDelay samples. The value at the control pin
decides which value in the buffer is output. A control value of 0 or less outputs the most
current sample in the buffer (the one just read). A control value of MaxDelay, or more,
outputs the oldest sample in the buffer (the one read MaxDelay executions of the
component ago). A control value of N (0 < N < MaxDelay) outputs the sample in the
buffer that was read N executions of the component ago.

Advanced Design System 2011.01 - Numeric Components

255

 Numeric Fixed-Point DSP Components
AbsSyn (numeric)
AccumSyn (numeric)
AddRegSyn (numeric)
AddSyn (numeric)
And2Syn (numeric)
AndSyn (numeric)
BarShiftSyn (numeric)
BitFillSyn (numeric)
BPSKSyn (numeric)
BufferSyn (numeric)
Bus8MergeSyn (numeric)
Bus8RipSyn (numeric)
BusMergeSyn (numeric)
BusRipSyn (numeric)
CastSyn (numeric)
CombFiltSyn (numeric)
Comp6Syn (numeric)
CompSyn (numeric)
ConstSyn (numeric)
CountCombSyn (numeric)
CounterSyn (numeric)
Div2ClockSyn (numeric)
DPRamRegSyn (numeric)
DPRamSyn (numeric)
DPSKSyn (numeric)
DualNCOSyn (numeric)
FIRSyn (numeric)
FixedGainSyn (numeric)
FixToFloatSyn (numeric)
FloatToFixSyn (numeric)
FSMSyn (numeric)
GainSyn (numeric)
IntegratorSyn (numeric)
LCounterSyn (numeric)
MultRegSyn (numeric)
MultSyn (numeric)
Mux2Syn (numeric)
Mux3Syn (numeric)
Mux4Syn (numeric)
MuxSyn (numeric)
Nand2Syn (numeric)
NCOSyn (numeric)
Nor2Syn (numeric)
NotSyn (numeric)
OQPSKSyn (numeric)
Or2Syn (numeric)
OrSyn (numeric)
PI4DQPSKSyn (numeric)
PSK8Syn (numeric)

Advanced Design System 2011.01 - Numeric Components

256

QPSKSyn (numeric)
RamRegSyn (numeric)
RamSyn (numeric)
RegSyn (numeric)
RomRegSyn (numeric)
RomSyn (numeric)
SerialFIRSyn (numeric)
ShiftRegPPSyn (numeric)
ShiftRegPSSyn (numeric)
ShiftRegSPSyn (numeric)
SineCosineSyn (numeric)
SinkRespSyn (numeric)
SinkStimSyn (numeric)
SubRegSyn (numeric)
SymFIRSyn (numeric)
Xor2Syn (numeric)
XorSyn (numeric)
ZeroInterpSyn (numeric)

The numeric fixed-point DSP components provide digital signal processing functions on
single data points of data that are fixed-point (fixed). These components do not accept
any matrix class of signal.

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30; a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Fixed-point DSP components (such as registers, counters, shift registers) that have clock
inputs have the following simulation behavior depending on whether clock inputs are
connected or not. If clock is not connected, then each simulation step is taken as a
positive clock edge; for example, if the data register RegSyn clock is not connected, then
RegSyn simulates a a unit-step delay. If clock is connected, then the component will
simulate according to the clock input state; for example, if the data register RegSyn clock
is connected, then RegSyn simulates as a positive edge clock sensitive register.

Fixed-point DSP components (such as registers, counters, and shift registers) that have
set inputs have the following simulation behavior depending on whether the set inputs are
connected or not. If the set input is not connected, then the component is reset at the first
simulation step. If the set input is connected, then the component will simulate according
to the set input state.

For fixed-point DSP components that perform math operations (such as adders,
subtractors, gain blocks, and filters), the ArithType parameter specifies the arithmetic
type of the output signal and can be set to TWOS_COMPLEMENT or UN_SIGNED values.
When the input fixed-point signal has an arithmetic type that is not the same as
ArithType, the bit pattern representing the input number will be interpreted in the

Advanced Design System 2011.01 - Numeric Components

257

arithmetic defined by ArithType. This can lead to unexpected results; therefore, arithmetic
types should not be mixed when performing math operations.

Advanced Design System 2011.01 - Numeric Components

258

 AbsSyn

Description: Absolute
Library: Numeric, Fixed-Point DSP
Class: SDFAbsSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

AbsSyn presents an output with the absolute value of the given data input.1.
OutputPrecision specifies the fixed-point precision format of the output. For example,2.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

259

 AccumSyn

Description: Scaled by 1/2 Accumulator
Library: Numeric, Fixed-Point DSP
Class: SDFAccumSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input – Data input which is loaded by asserting Load
input

fix

2 Load Load input – loads Data into accumulator of accumulator fix

3 Clock Clock input – optional control pin fix

4 CE Clock enable input – optional control pin fix

5 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

6 Result fix

 Notes/Equations

This model is a scale-by-half accumulator. Physically, the model can be viewed as an1.
adder that adds the present input Data to one-half the value of the previous output
of the adder. The delayed adder output feedback is achieved by using an internal
data register that is clocked by the positive edge transitions of the Clock 1-bit. In
discrete equation form, the equation defining the model is:

Result = Previous_Result/2 + Data

 Internal Structure of Scale-by-Half Accumulator Model

Advanced Design System 2011.01 - Numeric Components

260

The Clock input is optional:2.
if it is connected, the model will operate based on the positive edge transitions
of the Clock input
if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition

Assertion of the Reset input by bringing it low (a value of 0) will clear the internal3.
data register.
The (optional) CE input is the clock-enable control for the internal data register.4.

if it is connected and has a high value (a value of 1), the internal data register is
enabled and will load its input onto a positive Clock edge
if it is not connected and low (a value of 0) the clock to the internal data register
is disabled. The internal data register is always enabled when the CE input is not
connected

The (optional) Load input is asserted by bring it high (a value of 1).5.
if it is asserted, the Data input is loaded into the internal data register
if it is unconnected, the Load is never asserted

For general information regarding numeric fixed-point DSP functions, refer to6.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

261

 AddRegSyn

Description: Registered Adder
Library: Numeric, Fixed-Point DSP
Class: SDFAddRegSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

3 Clock Clock input – optional control pin fix

4 CE Clock enable input – optional control pin fix

5 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

6 Result fix

 Notes/Equations

This model is a registered adder. It calculates the addition of its A and B data inputs1.
(A+B) and registers its output Result such that it has the specified precision as set in
the OutputPrecision parameter.
The Clock input is optional:2.

if it is connected, the model will operate based on the positive edge transitions
of the Clock input
if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition

Assertion of the Reset input by bringing it low (a value of 0) will clear the output data3.
register.
The (optional) CE input is the clock-enable control for the output data register:4.

if it is connected and has a high value (a value of 1), the output data register is

Advanced Design System 2011.01 - Numeric Components

262

enabled and will load the addition result upon a positive Clock edge.
if it is connected, and low (a value of 0) the clock to the output data register is
disabled.
if the CE input is not connected, the output data register is always enabled.

For general information regarding numeric fixed-point DSP functions, refer to5.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

263

 AddSyn

Description: Adder/Subtractor
Library: Numeric, Fixed-Point DSP
Class: SDFAddSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

AddSub enumeration state: ADD, SUBTRACT ADD enum

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

3 Sub fix

 Pin Outputs

Pin Name Description Signal Type

4 Result fix

 Notes/Equations

The add/sub control input pin is optional.1.
If the add/sub control input pin is not connected, the AddSub parameter is used
to specify whether the adder adds or subtracts.
If the add/sub control input pin is connected: a zero value indicates add; a non-
zero value indicates subtract. (The AddSub parameter is ignored in this case.)

OutputPrecision specifies the fixed-point precision format of the output. For example,2.
if OutputPrecision = 1.15, 1 bit is used to represent the integer part of the output,
and 15 bits are used to represent the fractional portion of the output.
When AddSub is used as an adder, out = A + B; when AddSub is used as a3.
subtractor, out = A − B.
Bit alignment is automatic at the inputs so the two input values are added correctly.4.
This is done by zero padding or sign extending the inputs such that their decimal
points are aligned.

Advanced Design System 2011.01 - Numeric Components

264

When the arithmetic type of an input to AddSyn is different from the ArithType5.
parameter of AddSyn, then AddSyn interprets the input bit pattern in the arithmetic
type specified by the ArithType parameter. For example, assume that the ArithType
of AddSyn is TWOS_COMPLEMENT and that one of its inputs is 0.7 represented in
unsigned arithmetic and 0.8 precision. The corresponding bit pattern is 10110011
(1 × 1/2 + 0 × 1/4 + 1 × 1/8 + 1 × 1/16 + 0 × 1/32 + 0 × 1/64 + 1 × 1/128 +
1 × 1/256 = 0.69921875).
In two's complement this bit pattern represents a negative number since the first bit
is 1. To get the magnitude of this number we first complement the bits to get
01001100 and then add 1 to get 01001101. Therefore, this bit pattern has a value of
-(0 × 1/2 + 1 × 1/4 + 0 × 1/8 + 0 × 1/16 + 1 × 1/32 + 1 × 1/64 + 0 × 1/128 +
1 × 1/256 = 0.30078125), and this is the value that AddSyn will use.
Thus, arithmetic types should not be mixed when adding or subtracting fixed-point
numbers.
For general information regarding numeric fixed-point DSP functions, refer to6.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

265

 And2Syn

Description: 2-input AND
Library: Numeric, Fixed-Point DSP
Class: SDFAnd2Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width Width of an input
bus.

8 int

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

This model is a 2-input AND gate that takes a bitwise AND of inputs A and B (both of1.
bitwidth Width) and outputs the results; that is, Result = A and B.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

266

 AndSyn

Description: Bitwise AND
Library: Numeric, Fixed-Point DSP
Class: SDFAndSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of a bus segment within the input bus 8 int

Size number of bus segments within the input
bus

2 int

 Pin Outputs

Pin Name Description Signal Type

1 Data fix

 Pin Inputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

The input bus is composed of Size number of smaller bus segments. Each bus1.
segment within the input bus is of bitwidth Width. AndSyn performs a bitwise AND of
the bus segments resulting in the output Result of bitwidth Width. For example,
Width = 8, Size = 2 means that the input bus is interpreted as having 2 bus
segments, each of bitwidth 8. The output of AndSyn is the bitwise AND of the 2 bus
segments, as illustrated below.

 Width = 8, Size = 2

An example design where two 8-bit signals are ANDed together is shown below.2.

 AndSyn Example Design

Advanced Design System 2011.01 - Numeric Components

267

 AndSyn Example Design

For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

268

 BarShiftSyn

Description: Barrel Shifter
Library: Numeric, Fixed-Point DSP
Class: SDFBarShiftSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

Mode type of shifting: LOGICAL_SHIFT, ARITHMETIC_SHIFT,
ROTATE_SHIFT

LOGICAL_SHIFT enum

Direction direction of shift in the barrel shifter: RIGHT_SHIFT,
LEFT_SHIFT

LEFT_SHIFT enum

NShift number of bit positions to shift by 0 int

 Pin Inputs

Pin Name Description Signal Type

1 Data Input data fix

2 Dist Dist control input for how many bits to shift by fix

 Pin Outputs

Pin Name Description Signal Type

3 Result Barrel shift result fix

 Notes/Equations

BarShiftSyn shifts the input bits by the amount specified by the control input Dist or1.
(if Dist is not connected) by the integer parameter NShift. The output bit width,
number of integer bits, and arithmetic type are set by the parameters of the barrel
shifter.

Logical shifting to the right
(Mode = LOGICAL_SHIFT, Direction = RIGHT_SHIFT)
inserts zeros in the vacated most significant bits; logical shifting to the left
(Mode = LOGICAL_SHIFT, Direction = LEFT_SHIFT)
is the same as Arithmetic shifting to the left.
Arithmetic shifting to the right
(Mode = ARITHMETIC_SHIFT, Direction = RIGHT_SHIFT)
will sign extend the vacated most significant bits.
Rotate shifting to the right
(Mode = ROTATE_SHIFT, Direction = RIGHT_SHIFT)

Advanced Design System 2011.01 - Numeric Components

269

will shift the least significant bits into the vacated most significant bits.
Conversely, Rotate shifting to the left
(Mode = ROTATE_SHIFT, Direction = LEFT_SHIFT)
will shift the most significant bits into the vacated least significant bits.

OutputPrecision specifies the fixed-point precision format of the output. For example,2.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
Direction of shifting is done assuming that the MSB is on the left and LSB is on the3.
right. LEFT_SHIFT will shift towards the MSB. Conversely, RIGHT_SHIFT will shift
towards the LSB.
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

270

 BitFillSyn

Description: Bit Fill
Library: Numeric, Fixed-Point DSP
Class: SDFBitFillSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of output
bus

1 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

BitFillSyn takes the single bit input and copies it to an output bus of bitwidth Width.1.
It replicates the single bit input value to the output bus.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

271

 BPSKSyn

Description: BPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFBPSKSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width bit width of encoder
output

8 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

The output signal Result of the BPSK encoder is a twos-complement fixed-point1.
number with 1 sign bit and (Width −1) fractional bits.
An input bit value of 1 is mapped to the most positive-valued fixed-point number that
can be represented by 1 sign bit and (Width-1) fractional bits. Conversely, an input
bit value of 0 is mapped to the next-to-most negative-valued fixed-point number that
can be represented by 1 sign bit and (Width-1) fractional bits. This ensures that the
positive and negative valued outputs of the model have the same magnitude.
For example, with Width = 8, mapping will be done in the following manner:

input bit value of 1 will be mapped to 01111111
input bit value of 0 will be mapped to 10000001

For general information regarding numeric fixed-point DSP functions, refer to the2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

272

 BufferSyn

Description: Buffer
Library: Numeric, Fixed-Point DSP
Class: SDFBufferSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width number of bits in
input

16 int

InvMask bit mask pattern 0 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

BufferSyn inverts the bits within the input bus based on the InvMask parameter; 1 in1.
a bit position in InvMask will invert the corresponding bit in the input bus.
InvMask can be specified in hex (0x prefix), octal (0 prefix),
binary (0b prefix), or decimal (without a 0 prefix). For example, if Width = 2:

to invert both inputs bits, specify: InvMask = 0x3 (hex), InvMask = 03 (octal),
InvMask = 0b11 (binary), InvMask = 3 (decimal).
to invert the LSB of the two input bits, specify: InvMask = 0x1 (hex), InvMask =
01 (octal), InvMask = 0b01 (binary), InvMask = 1 (decimal).

For general information regarding numeric fixed-point DSP functions, refer to the2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

273

 Bus8MergeSyn

Description: 8-Bit-to-Bus Merge
Library: Numeric, Fixed-Point DSP
Class: SDFBus8MergeSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width number of bits in output
bus

 int

 Pin Inputs

Pin Name Description Signal Type

1 Data0 fix

2 Data1 fix

3 Data2 fix

4 Data3 fix

5 Data4 fix

6 Data5 fix

7 Data6 fix

8 Data7 fix

 Pin Outputs

Pin Name Description Signal Type

9 Output fix

 Notes/Equations

Bus8MergeSyn merges its eight 1-bit inputs into a bus.1.
The most significant bit in the output bus is taken from the 1-bit Data7 input pin; the2.
next most significant bit is taken from the 1-bit Data6, and so on.
Width parameter specifies the size of the output bus. Input pins must be connected3.
to the appropriate Width. For example: if Width = 1, Data7 is connected; if Width =
5, input pins Data7, Data6, Data5, Data4, and Data3 must all be connected.
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

274

 Bus8RipSyn

Description: Bus-to-8-Bit Ripper
Library: Numeric, Fixed-Point DSP
Class: SDFBus8RipSyn
Derived From: SDFHPFix

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Output0 fix

3 Output1 fix

4 Output2 fix

5 Output3 fix

6 Output4 fix

7 Output5 fix

8 Output6 fix

9 Output7 fix

 Notes/Equations

Bus8RipSyn rips out the highest byte in the data input bus and outputs them as 1-bit1.
outputs.
The most significant bit in the data input bus is output on the pin marked Output7;2.
correspondingly, the least significant bit in the data input bus is output on the pin
marked Output0.
For general information regarding numeric fixed-point DSP functions, refer to the3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

275

 BusMergeSyn

Description: Bus Merge
Library: Numeric, Fixed-Point DSP
Class: SDFBusMergeSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width bitwidth of
output

0 int

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

BusMergeSyn merges the two input buses A and B into a larger, merged bus.1.
In the merged bus, A will be located in the MSB portion, while B will be located in the
LSB portion.
The output bitwidth is specified by Width and must be equal to the sum of the two2.
input bitwidths.
The output arithmetic type is always unsigned, Width number of integer bits, 03.
fractional bits.
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

276

 BusRipSyn

Description: Bus Ripper
Library: Numeric, Fixed-Point DSP
Class: SDFBusRipSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

Offset how far to right of MSB (Sign bit for TWOS_COMPLEMENT) to
take ripped bit_vector

0 int

RipPrecision precision of ripped-out segment of input bus 2.6 precision

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

3 PassThru fix

 Notes/Equations

BusRipSyn rips out a smaller contiguous bit vector (Fix) from the input bit vector1.
(Fix).
The arithmetic type of the RIP output is the same as ArithType.2.
OutputPrecision specifies the fixed-point precision format of the output. For example,3.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

277

 CastSyn

Description: Cast
Library: Numeric, Fixed-Point DSP
Class: SDFCastSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

CastSyn copies the bits within the input bus to the output bus. It does not alter the1.
input bits, but only changes the precision and arithmetic type associated with the
input bits. The total number of output bits should be the same as the input.
OutputPrecision specifies the fixed-point precision format of the output. For example,2.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

278

 CombFiltSyn

Description: Comb Filter
Library: Numeric, Fixed-Point DSP
Class: SDFCombFiltSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

PipeStages Depth of pipeline, must be > 0. 1 int

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input fix

2 Clock Clock input – optional control pin fix

3 CE Clock enable input – optional control
pin

fix

 Pin Outputs

Pin Name Description Signal Type

4 Result Comb Filter output fix

 Notes/Equations

This model implements the transfer function of (1-z -M) which comprises the comb1.
section of a comb filter, where M = PipeStages. In other words, a delayed version of
the input data value (PipeStages clocks previously) is subtracted from the present
input data value. In discrete equation form, it can be represented as:
Result = Data - Data(Delayed_by_M_clocks)

 Internal Structure of Comb Section Model

Advanced Design System 2011.01 - Numeric Components

279

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

280

 Comp6Syn

Description: Compare with 6 Outputs
Library: Numeric, Fixed-Point DSP
Class: SDFComp6Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 GT fix

4 GE fix

5 LT fix

6 LE fix

7 EQ fix

8 NE fix

 Notes/Equations

Comp6Syn compares the value as represented by the two inputs and tests for six1.
conditions. If a condition is TRUE, the output result is a 1, else 0.
Comparison modes are: A ≠ B, A = B, A ≤ B, A < B, A ≥ B, A > B.2.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

281

 CompSyn

Description: Compare
Library: Numeric, Fixed-Point DSP
Class: SDFCompSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

Mode condition to be tested: EQUAL, LESS_OR_EQUAL,
GREATER_OR_EQUAL

EQUAL enum

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

4 ResultB fix

 Notes/Equations

CompSyn compares the value as represented by the two inputs and tests for the1.
condition specified by Mode. If the condition is TRUE, the output out will go HIGH and

the output
will go LOW.
Comparison modes are: A = B, A ≤ B, A ≥ B.2.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

282

 ConstSyn

Description: Constant
Library: Numeric, Fixed-Point DSP
Class: SDFConstSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

ConstValue constant value of device, specified as a real value 1.0 real

 Pin Outputs

Pin Name Description Signal Type

1 Result fix

 Notes/Equations

ConstValue is converted to the precision and type specified by OutputPrecision and1.
ArithType.
OutputPrecision specifies the fixed-point precision format of the output. For example,2.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

283

 CountCombSyn

Description: Counter Combinational Logic
Library: Numeric, Fixed-Point DSP
Class: SDFCountCombSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of counter 8 int

CounterType type of counter: JOHNSON_CTR, LFSR_CTR,
GRAY_CTR

JOHNSON_CTR enum

LFSR_Poly LFSR polynomial to be used in LFSR counter 0xff string

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

CountCombSyn models the combinational logic portion of a Johnson, LFSR (linear1.
feedback shift register), or Gray counter. Usage is illustrated.

LFSR_Poly sets the LFSR polynomial to be used when CounterType = LFSR_CTR. It is2.
specified as a hex string; for example, LFSR_Poly = 0xFE.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

284

 CounterSyn

Description: Binary Counter
Library: Numeric, Fixed-Point DSP
Class: SDFCounterSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of binary counter 16 int

ValueS value of counter when Set is asserted (low) 0 int

 Pin Inputs

Pin Name Description Signal
Type

1 Clock Clock signal – if connected, counter is positive edge triggered on clock transitions. fix

2 CE Clock Enable signal – if connected and asserted (high) enables counter when
asserted (high).

fix

3 Up Up/Down control signal – if connected and asserted (high) counter counts up. fix

4 Set Set/Reset control signal – if connected and asserted (low) counter resets fix

 Pin Outputs

Pin Name Description Signal Type

5 Q Counter output signal – parallel
data.

fix

 Notes/Equations

The Binary Counter is positive-edge clock triggered when the CE pin is asserted1.
(high).
The control pins are optional-these do not have to be connected.2.
ValueS can be specified in hex (0x prefix), octal (0 prefix),3.
binary (0b prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
0b11111 (binary).
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

285

 Div2ClockSyn

Description: Power-of-2 Clock Divider
Library: Numeric, Fixed-Point DSP
Class: SDFDiv2ClockSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

DivideBy Value to divide input Clock by.: TWO, FOUR, EIGHT, SIXTEEN TWO enum

 Pin Inputs

Pin Name Description Signal Type

1 InClock Clock input fix

2 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

3 DivClock Clock output fix

 Notes/Equations

This model is a divide-by-power-of-2 clock divider; options are to divide by 2, 4, 8, or1.
16.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

286

 DPRamRegSyn

Description: Registered Dual-Port RAM
Library: Numeric, Fixed-Point DSP
Class: SDFDPRamRegSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

Depth Number of words in RAM 16 int

ramFile File containing initial RAM values filename

ramFileFormat Format of RAM init file.: REAL, HEX HEX enum

 Pin Inputs

Pin Name Description Signal
Type

1 AddrR input read address fix

2 AddrW input write address fix

3 Data input data fix

4 Clock Clock input – optional control pin fix

5 CE Clock enable input – optional control pin fix

6 WE write enable input: if low, then the input data is written to the RAM location specified
by AddrW.

fix

 Pin Outputs

Pin Name Description Signal Type

7 Q output data fix

 Notes/Equations

This model implements a dual-port RAM with a registered output. Given an input1.
address in AddrW (write address), and data in Data, the model will write the input
Data into an internal array if WE is asserted by a low value. If WE is not asserted,
then the model will not write Data into the address location as specified in AddrW.
The input address in AddrR (read address) is used to read out the data in the dual-
port RAM model, which is sent to the output Q.
The output of the dual-port RAM is registered with a positive edge Clock input. The2.
clock enable CE control input is optional:

Advanced Design System 2011.01 - Numeric Components

287

if it is not connected, the model is always enabled
if it is connected, it is enabled by a high value in CE

The initial values in the dual-port RAM can be defined in the (optional) file as3.
specified in the ramFile parameter. The format of the file is specified by the
ramFileFormat parameter; the initial values can be specified as REAL or HEX. The
address of each initial data read into the model is the same as the line number of the
corresponding data read from the initialization file.
The initial values are specified as a column of values as in the following examples.

if ramFileFormat = REAL, which specifies that the RAM initialization file contains
real values, an example of such a file would be:
0.98
0.24
0.12
.
.
.
From this example, the model will interpret the first line as address 0 with data
equal to the fixed-point value corresponding to 0.98, and so on. Note that the
model will convert the real values to its fixed-point representation using the
specified precision in the OutputPrecision parameter, and arithmetic type as
specified in the ArithType parameter.
if ramFileFormat = HEX, an example of such a file would be:
0x7f
0x06
0x08
.
.
.
From this example, the model will interpret the first line as address 0 with data
equal to 0x7f, and so on.

The Depth parameter specifies the number of words in the dual-port RAM.4.
For general information regarding numeric fixed-point DSP functions, refer to5.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

288

 DPRamSyn

Description: Dual-Port RAM
Library: Numeric, Fixed-Point DSP
Class: SDFDPRamSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

Depth size of (number of words in) RAM 16 int

ramFile name of file containing initial RAM values (optional)
(represented in hex data format in file)

 filename

 Pin Inputs

Pin Name Description Signal
Type

1 AddrR input read address fix

2 AddrW input write address fix

3 Data input data fix

4 WE write enable input: if low, then the input data is written to the RAM location specified
by AddrW.

fix

 Pin Outputs

Pin Name Description Signal Type

5 Q output data fix

 Notes/Equations

DPRamSyn models a dual-port RAM. Data in the RAM can be initialized by specifying1.
the file name in the ramFile parameter.
The path name for ramFile can be specified in several ways: one is to just specify the2.
file name, for example ramFile = foo, which is assumed to be located within the
current workspace data directory; another is by specifying the absolute path, as in
ramFile = /usr/user_name/foo; or, the environmental variables can also be used to
set the file path name, for example ramFile = $ENV_FOO/foo, where ENV_FOO is an
environmental variable.
The bitwidths and arithmetic type of the output data are defined by the device3.
parameters. The size of the RAM is specified by the Depth parameter. An example file
format is:

Advanced Design System 2011.01 - Numeric Components

289

0x01
0xff
0xca
.
.
.
and so on.
The data format in the file is assumed to be right-justified.4.
OutputPrecision specifies the fixed-point precision format of the output. For example,5.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to6.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

290

 DPSKSyn

Description: Differential BPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFDPSKSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width bit width of encoder outputs 8 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

2 Clock Clock input – optional control pin fix

3 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

4 Result fix

 Notes/Equations

The output signal Result of the DPSK encoder is a twos-complement fixed-point1.
number with 1 sign bit and (Width-1) fractional bits.
The 1-bit input data is clocked (positive edge triggered) into a 2-deep FIFO buffer.
Values of the 2-deep FIFO buffer are XORed together to get the differential output bit
result. A resulting bit value of 1 (after the XOR operation on the 2 data bits in the
FIFO buffer) is mapped to the most positive-valued fixed-point number that can be
represented by 1 sign bit and (Width-1) fractional bits. Conversely, a resulting bit
value of 0 is mapped to the next-to-most negative-valued fixed-point number that
can be represented by 1 sign bit and (Width-1) fractional bits.
This ensures that the positive and negative valued outputs of the model have the
same magnitude.
Assertion of the Set input (a low value, i.e. 0) will clear the values of the FIFO
buffers.
For example, with Width = 8, with an input bit sequence of 0 1 (with 0 being older,
and 1 being the most recent), and assuming that initially the encoder is reset, the
following will result:

first input bit 0 will result in the XOR output of 0 0 = 0, which maps to 10000001
second input bit 1 will result in the XOR output of 1 0 = 1, which maps to

Advanced Design System 2011.01 - Numeric Components

291

01111111
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

292

 DualNCOSyn

Description: Dual Channel Numerically Controlled Oscillator
Library: Numeric, Fixed-Point DSP
Class: SDFDualNCOSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

SetType Mode for Set/Reset control input.: ASYNCHRONOUS,
SYNCHRONOUS, SET_PIN_NOTUSED

ASYNCHRONOUS enum

OutWidth Output width of NCO. 10 int

PhaseAccWidth Width of phase accumulator in NCO. 16 int

PhaseWidth Number of bits used from phase accumulator for sine/cosine table. 8 int

PhaseIncrWidth Width of phase increment input. 10 int

 Pin Inputs

Pin Name Description Signal Type

1 PhaseIncr fix

2 Clock Clock input – optional control pin fix

3 Load Load control input – optional control pin fix

4 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

5 SineOut fix

6 CosineOut fix

 Notes/Equations

This model implements a dual-output numerically controlled oscillator (NCO). Given a1.
phase increment PhaseIncr input value, it outputs sine and cosine fixed-point signals
(1 sign bit, (OutWidth-1) fractional bits twos-complement) with a frequency
proportional to the value of the PhaseIncr input.
When the Load input is asserted by bringing it high (a value of 1), the PhaseIncr2.
input data is loaded into an internal phase increment register in the NCO model. The
input phase increment value in PhaseIncr is interpreted within the model as an
unsigned fixed-point number (with PhaseIncrWidth integer bits, and no fractional
bits).
The model contains a phase accumulator (of bitwidth PhaseAccWidth) that adds the3.
value in the phase increment register to the previous phase accumulator value. The

Advanced Design System 2011.01 - Numeric Components

293

result of the phase accumulator (actually the most significant PhaseWidth bits of the
phase accumulator) is used as an index to a sine/cosine look-up table that outputs
the sine and cosine values corresponding to the current phase accumulator value.
The output sine and cosine signals SineOut, CosineOut are represented as twos-
complement, 1-sign bit, (OutWidth −1) fractional bits, fixed-point numbers.
Assertion of the Reset input by bringing it low (a value of 0) will clear the NCO phase4.
increment register and the phase accumulator.

 Internal Structure of Dual-Output NCO Model

For general information regarding numeric fixed-point DSP functions, refer to5.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

294

 FIRSyn

Description: General Finite Impulse Response (FIR) Filter
Library: Numeric, Fixed-Point DSP
Class: SDFFIRSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

NumOfTaps Number of taps in FIR filter. 1 int

CoefPrecision Precision of the coefficients in the coefficient file. 2.14 precision

DataPrecision Precision of the DataFeedThru output (used in cascading FIR
filters).

2.14 precision

CoefFile File containing FIR coefficient values. filename

CoefFileFormat Format of FIR Coefficients file.: REAL, HEX HEX enum

 Pin Inputs

Pin Name Description Signal Type

1 DataIn Data input fix

2 Clock Clock input – optional control pin fix

3 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

4 Result FIR result output (with precision OutputPrecision) fix

5 DataFeedThru Data output (with precision DataPrecision = precision of DataIn input) fix

 Notes/Equations

This model is a FIR (finite impulse response) filter model. It implements a general1.
parallel FIR structure and retains full precision internally when computing filter output
values. The only quantization done is at the Result output.

 Internal Structure of FIR Model

Advanced Design System 2011.01 - Numeric Components

295

The Result output of the FIR model is the final result of the FIR filtering done within2.
the model, and quantized to the precision specified by OutputPrecision.
Data from the DataIn input is clocked into the internal data registers of the FIR3.
model upon the positive edge transitions of the Clock input if the Clock pin is
connected. If the Clock pin is not connected, data is shifted into the internal data
registers at every sample step in the simulator.
The 1-bit Reset input pin is asserted by bring it low (value of 1), which will clear all4.
internal data registers.
The DataFeedThru output of the FIR model is the output of the oldest data in the5.
internal data registers.
The designer can use this output to feed the next stage of a FIR filter model in order
to create a cascade of FIR filter models. By cascading sections of FIR cores, the
designer can build a larger order FIR filter than the maximum for just one FIR core.
The filter tap coefficients of the FIR filter are defined in the file as specified in the6.
CoefFile parameter. The format of the file is specified by the CoefFileFormat
parameter; tap coefficients can be specified as REAL or HEX values. The tap
coefficients are specified as a column of values in the file. The 0th tap filter
coefficient is the value on the first line of the filter tap coefficient file, the 1th tap
filter coefficient corresponds to the value on the second line, the 2th tap filter
coefficient corresponds to the value on the third line, and so on.
Consider the following examples:

If CoefFileFormat = REAL, which specifies that the filter tap coefficient file
contains real values for the filter tap coefficients, an example of such a file
would be:
0.98
0.24
0.12
0.05
-0.13
0.21
.
.
.
If CoefFileFormat = HEX which specifies that the filter tap coefficient file
contains hex values for the filter tap coefficients, an example of such a file would
be:
0x7f
0x06
0x02
0x8f
0x07
0x08
.
.

Advanced Design System 2011.01 - Numeric Components

296

.
The NumOfTaps parameter specifies the number of tap coefficients to be read from7.
the file specified by CoefFile.

If NumOfTaps is assigned a value that is less than the taps value provided in
CoefFile, only the first NumOfTaps coefficients will be picked from the file.
If NumOfTaps is greater than the taps provided, the rest of the taps will be
padded with 0.

The CoefPrecision parameter specifies the precision of the filter tap coefficients, that8.
is, the number of integer bits (including the sign bit) and the number of fractional
bits to be used to represent the filter tap coefficients.
For general information regarding numeric fixed-point DSP functions, refer to9.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

297

 FixedGainSyn

Description: Fixed Gain
Library: Numeric, Fixed-Point DSP
Class: SDFFixedGainSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Gain Gain of device specified as a real value. 1.0 real

GainPrecision Precision of the gain parameter. 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

FixedGainSyn models a gain block that multiplies the input value by the specified1.
Gain (quantized by GainPrecision) and outputs the result at the specified
OutputPrecision.
OutputPrecision specifies the fixed-point precision format of the output: if2.
OutputPrecision = 1.15, 1 bit is used to represent the integer part of the output, and
15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

298

 FixToFloatSyn

Description: Fixed-Point to Floating-Point
Library: Numeric, Fixed-Point DSP
Class: SDFFixToFloatSyn
Derived From: SDFHPFix

 Pin Inputs

Pin Name Description Signal Type

1 Data Input fix
type

fix

 Pin Outputs

Pin Name Description Signal Type

2 Result Output float
type

real

 Notes/Equations

FixToFloatSyn converts a fixed-point input to a floating-point (real) output.1.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

299

 FloatToFixSyn

Description: Floating-Point to Fixed-Point
Library: Numeric, Fixed-Point DSP
Class: SDFFloatToFixSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

 Pin Inputs

Pin Name Description Signal Type

1 Data Input float
type

real

 Pin Outputs

Pin Name Description Signal Type

2 Result Output fix
type

fix

 Notes/Equations

FloatToFixSyn converts a floating-point (real) input to a fixed-point output. It1.
quantizes by rounding and it saturates upon overflow.
OutputPrecision specifies the fixed-point precision format of the output. For example,2.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

300

 FSMSyn

Description: Mealy Finite State Machine (FSM)
Library: Numeric, Fixed-Point DSP
Class: SDFFSMSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

fsmFile File containing Mealy FSM definition user_defined.fsm filename

InputWidth Bit width of data input of Mealy FSM 1 int

StateWidth Bit width of state register of Mealy FSM 1 int

OutputWidth Bit width of output of Mealy FSM 1 int

fsmFileFormat Format of Mealy FSM definition file: HEX, OCTAL,
DECIMAL

HEX enum

Depth Number of row entries in FSM definition file 1 int

ResetStateVal Reset State Value 0 int

DefaultStateVal Default State Value 0 int

DefaultOutVal Default Output Value 0 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

2 Clock Clock input – optional control pin fix

3 Reset Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

4 Result fix

5 OutState fix

 Notes/Equations

This model implements a Mealy finite state machine. The state transitions and output1.
values of the Mealy FSM are defined in the file specified in the fsmFile parameter. The
format of the entries within the Mealy FSM definition file can be hex (0x01FE, for
example), octal (016, for example), or decimal (230, for example).
Each line in the file contains the following entries separated by at least a space: the
first entry is the input data value; the second entry is the present state value; the
third entry is the next state value; the final entry is the output value. Thus, each line

Advanced Design System 2011.01 - Numeric Components

301

in the FSM definition file should look like:

input_data present_state next_state output

Consider the example of a Mealy FSM definition file entries:

0x01 0x00 0x01 0x1

0x00 0x00 0x00 0x0

0x01 0x01 0x02 0x0

0x00 0x01 0x01 0x1

The first line in the example file specifies that given an input of 0x01, and a
present state of 0x00, the next state of the FSM will be 0x01, and the output is
0x1.
The second line specifies that given an input of 0x00, and a present state of
0x00, the next state of the FSM will be 0x00, and the output is 0x0.
The third line specifies that given an input of 0x01, and a present state of 0x01,
the next state of the FSM will be 0x02, and the output is 0x0. It should be clear
how the definition file is interpreted by the model from this example.
Any input and state combinations that are not covered by the Mealy FSM
definition file will be covered by the default state and output values as specified
in model parameters DefaultStateVal and DefaultOutVal.
The state of the Mealy FSM can be initialized to a known reset state by asserting
the Reset input (by giving it a low value of 0) which will set the state of the
Mealy FSM to the value specified in model parameter ResetStateVal.
The values for parameters DefaultStateVal, DefaultOutVal, and ResetStateVal
can be specified in decimal form (for example, DefaultOutVal = 15), or in hex
form (for example, DefaultStateVal = 0x001).

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

302

 GainSyn

Description: Gain
Library: Numeric, Fixed-Point DSP
Class: SDFGainSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Gain gain of device specified as a real value. It is converted to the
precision of GainPrecision of ArithType arithmetic

1.0 real

GainPrecision precision of gain in bits and precision of accumulation. When
the gain value extends outside of the precision, the overflow
type is called

2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

GainSyn models a gain block that multiplies the input value by the specified Gain1.
(quantized by GainPrecision) and outputs the result at the specified OutputPrecision.
OutputPrecision specifies the fixed-point precision format of the output: if2.
OutputPrecision = 1.15, 1 bit is used to represent the integer part of the output, and
15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

303

 IntegratorSyn

Description: Integrator
Library: Numeric, Fixed-Point DSP
Class: SDFIntegratorSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input – Data input which is loaded by asserting Load
input

fix

2 Load Load input – loads Data into accumulator of integrator fix

3 Clock Clock input – optional control pin fix

4 CE Clock enable input – optional control pin fix

5 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

6 Result fix

 Notes/Equations

This model is a first order integrator. It has a transfer function of (1- z -1) -1 where z1.
-1 refers to a unit Clock delay. Physically, the model can be viewed as an adder that
adds the present input Data to the previous output of the adder. The delayed adder
output feedback is achieved by using an internal data register that is clocked by the
positive edge transitions of the Clock 1-bit. In discrete equation form, the equation
defining the model is:
Result = Previous_Result + Data

 Internal Structure of Integrator Model

Advanced Design System 2011.01 - Numeric Components

304

The Clock input is optional.2.
if it is connected, the model will operate based on the positive edge transitions
of the Clock input.
if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition.

Assertion of the Reset input by bringing it low (a value of 0) will clear the internal3.
data register.
The (optional) CE input is the clock-enable control for the internal data register.4.

if it is connected and has a high value (a value of 1), then the internal data
register is enabled and will load its input upon a positive Clock edge.
if it is not connected, and low (a value of 0) then the clock to the internal data
register is disabled. The internal data register is always enabled when the CE
input is not connected.

The (optional) Load input is asserted by bring it high (a value of 1).5.
if it is asserted, the Data input is loaded into the internal data register.
if it is unconnected, the Load is never asserted.

For general information regarding numeric fixed-point DSP functions, refer to6.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

305

 LCounterSyn

Description: Loadable Binary Counter
Library: Numeric, Fixed-Point DSP
Class: SDFLCounterSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of binary counter 16 int

ValueS value to which the counter is set when Set is asserted (high) 0 int

 Pin Inputs

Pin Name Description Signal
Type

1 Data Input data signal fix

2 Clock Clock signal – if connected, counter is positive edge triggered on clock transitions. fix

3 CE Clock Enable signal – if connected and asserted (high) enables counter when
asserted (high).

fix

4 Up Up/Down control signal – if connected and asserted (high) counter counts up. fix

5 Set Set/Reset control signal – if connected and asserted (low) counter resets fix

6 Load Load control signal – if connected and asserted (low) counter loads Data input. fix

 Pin Outputs

Pin Name Description Signal Type

7 Q Counter output signal – parallel
data.

fix

 Notes/Equations

LCounterSyn is positive-edge clock triggered when the count enabled pin is asserted1.
(high).
The control pins are optional-these do not have to be connected.2.
ValueS can be specified in hex (0x prefix), octal (0 prefix),3.
binary (0b prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
0b11111 (binary).
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

306

Advanced Design System 2011.01 - Numeric Components

307

 MultRegSyn

Description: Registered Multiplier
Library: Numeric, Fixed-Point DSP
Class: SDFMultRegSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

Latency Latency in clock cycles for multiplier result. 1 int

 Pin Inputs

Pin Name Description Signal Type

1 A input A fix

2 B input B fix

3 Clock Clock input – optional control pin fix

4 CE Clock enable input – optional control
pin

fix

 Pin Outputs

Pin Name Description Signal Type

5 Result Registered multiplier
output

fix

 Notes/Equations

This model is a registered adder. It calculates the multiplication of its A and B data1.
inputs (A × B) and registers its output Result such that it has the specified precision
as set in the OutputPrecision parameter.
The Clock input is optional:2.

if it is connected, the model will operate based on the positive edge transitions
of the Clock input
if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition.

Assertion of the Reset input by bringing it low (a value of 0) will clear the output data3.
register.

Advanced Design System 2011.01 - Numeric Components

308

The (optional) CE input is the clock-enable control for the output data register.4.
if it is connected and has a high value (a value of 1), the output data register is
enabled and will load the addition result upon a positive Clock edge.
if it is connected and low (a value of 0) the clock to the output data register is
disabled.
if the CE input is not connected, the output data register is always enabled.

For general information regarding numeric fixed-point DSP functions, refer to5.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

309

 MultSyn

Description: Multiplier
Library: Numeric, Fixed-Point DSP
Class: SDFMultSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

MultSyn multiplies two data inputs.1.
OutputPrecision specifies the fixed-point precision format of the output. For example,2.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

310

 Mux2Syn

Description: 2-input Multiplexer
Library: Numeric, Fixed-Point DSP
Class: SDFMux2Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width Width of an input
bus.

8 int

 Pin Inputs

Pin Name Description Signal Type

1 Data0 fix

2 Data1 fix

3 Sel fix

 Pin Outputs

Pin Name Description Signal Type

4 Result fix

 Notes/Equations

This model is a 2-input multiplexer. It selects input Data0 or Data1 depending on the1.
value of its Sel input. If the Sel input value is 0 (low value), Data0 is assigned to its
output Result; if the Sel input value is 1 (high value), Data1 is assigned to its output
Result.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

311

 Mux3Syn

Description: 3-input Multiplexer
Library: Numeric, Fixed-Point DSP
Class: SDFMux3Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width Width of an input
bus.

8 int

 Pin Inputs

Pin Name Description Signal Type

1 Data0 fix

2 Data1 fix

3 Data2 fix

4 Sel0 fix

5 Sel1 fix

 Pin Outputs

Pin Name Description Signal Type

6 Result fix

 Notes/Equations

This model is a 3-input multiplexer. It selects one of 3 inputs Data0, or Data1 or1.
Data2 depending on the value of its Sel0 and Sel1 inputs given in Data Selection,
Sel1 Sel0 Result

0 0 Data0

0 1 Data1

1 0 Data2

1 1 invalid input

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

312

 Mux4Syn

Description: 4-input Multiplexer
Library: Numeric, Fixed-Point DSP
Class: SDFMux4Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width Width of an input
bus.

8 int

 Pin Inputs

Pin Name Description Signal Type

1 Data0 fix

2 Data1 fix

3 Data2 fix

4 Data3 fix

5 Sel0 fix

6 Sel1 fix

 Pin Outputs

Pin Name Description Signal Type

7 Result fix

 Notes/Equations

This model is a 4-input MUX; it selects input Data0, Data1, Data2, or Data3 based on1.
the values of inputs Sel0 and Sel1 given in Data Selection.
Sel1 Sel0 Result

0 0 Data0

0 1 Data1

1 0 Data2

1 1 Data3

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

313

 MuxSyn

Description: Mux
Library: Numeric, Fixed-Point DSP
Class: SDFMuxSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of bus segment within the input bus 8 int

Size number of bus segments within the input
bus

2 int

WidthS bit width of select control input 1 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

2 Sel fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

The input bus is composed of Size number of smaller bus segments. Each bus1.
segment within the input bus is of bitwidth Width. MuxSyn selects one of the Size bus
segments and outputs it as result. The sel input is used to control which bus segment
is selected. A value of 0 in sel will select the least significant bus segment; a value of
1 will select the next-to-least-significant bus segment, and so on.

 Width = 8, Size = 2, WidthS = 1

Advanced Design System 2011.01 - Numeric Components

314

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

315

 Nand2Syn

Description: 2-input NAND
Library: Numeric, Fixed-Point DSP
Class: SDFNand2Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of bus segment within the input bus 8 int

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

This model is a 2-input NAND gate, which takes a bitwise NAND of inputs A and B1.
(both of bitwidth Width) and outputs the results, that is, Result = A NAND B.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

316

 NCOSyn

Description: Numerically Controlled Oscillator
Library: Numeric, Fixed-Point DSP
Class: SDFNCOSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

SetType Mode for Set/Reset control input.: ASYNCHRONOUS,
SYNCHRONOUS, SET_PIN_NOTUSED

ASYNCHRONOUS enum

OutWidth Output width of NCO. 10 int

PhaseAccWidth Width of phase accumulator in NCO. 16 int

PhaseWidth Number of bits used from phase accumulator for sine/cosine table. 8 int

PhaseIncrWidth Width of phase increment input. 10 int

 Pin Inputs

Pin Name Description Signal Type

1 PhaseIncr fix

2 Clock Clock input – optional control pin fix

3 Load Load control input – optional control pin fix

4 Set Asynchronous set/reset input – optional control pin fix

5 SineOrCosine SineOrCosine – controls whether sine or cosine is
output

fix

 Pin Outputs

Pin Name Description Signal Type

6 Out fix

 Notes/Equations

This model implements an Numerically Controlled Oscillator (NCO). Given a phase1.
increment PhaseIncr input value, it outputs a sine or cosine fixed-point signal (1 sign
bit, (OutWidth-1) fractional bits twos-complement) with a frequency proportional to
the value of the PhaseIncr input.
When the Load input is asserted by bring it high (a value of 1), the PhaseIncr input
data is loaded into an internal phase increment register in the NCO model. The input
phase increment value in PhaseIncr is interpreted within the model as an unsigned
fixed-point number (with PhaseIncrWidth integer bits, and no fractional bits).
The model contains a phase accumulator (of bitwidth PhaseAccWidth) which adds the
value in the phase increment register to the previous phase accumulator value. The

Advanced Design System 2011.01 - Numeric Components

317

result of the phase accumulator (actually the most significant PhaseWidth bits of the
phase accumulator) is used as an index to a sine/cosine look-up table that outputs a
sine or cosine value corresponding to the current phase accumulator value.

 Internal Structure of NCO model

The output sine or cosine signal in Out is represented as a twos-complement, 1-sign2.
bit, (OutWidth-1) fractional bits, fixed-point number.
The 1-bit control input SineOrCosine is optional. It is used to determine whether a3.
sine or cosine signal is evaluated by the model.

if the SineOrCosine pin is not connected, the default output of the model is a
sine signal.
if the SineOrCosine pin is connected: a low value (corresponding to 0) will cause
the model to output a cosine signal; conversely, a high value (corresponding to
1) will cause the model to output a sine signal.

Assertion of the Reset input by bringing it low (a value of 0) will clear the NCO phase4.
increment register and the phase accumulator.
For general information regarding numeric fixed-point DSP functions, refer to5.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

318

 Nor2Syn

Description: 2-input NOR
Library: Numeric, Fixed-Point DSP
Class: SDFNor2Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of bus segment within the input bus 8 int

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

This model is a 2-input NOR gate. It takes a bitwise NOR of inputs A and B, (both of1.
bitwidth Width) and outputs the results, that is, Result = A NOR B.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

319

 NotSyn

Description: NOT
Library: Numeric, Fixed-Point DSP
Class: SDFNotSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of bus segment within the input bus 8 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

This model is a NOT gate. It takes a bitwise NOT of input Data and outputs the1.
results, that is, Result = NOT(Data).
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

320

 OQPSKSyn

Description: Offset QPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFOQPSKSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width bit width of encoder outputs 8 int

 Pin Inputs

Pin Name Description Signal Type

1 DataI fix

2 DataQ fix

3 Clock fix

4 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

5 Iout fix

6 Qout fix

 Notes/Equations

The output signals of the OQPSK encoder are 2 twos-complement fixed-point1.
numbers with 1 sign bit and (Width −1) Iout and Qout fractional bits.
The In-phase data input DataI is clocked into an internal register (in the model we
will call dataireg) on the positive Clock edge, while the Quadrature-phase data input
DataQ is clocked into its internal register (in the model we will call dataqreg) on the
negative Clock edge (that is, a half symbol time later).
Assertion of the Set input (a low value, that is, 0) will clear the values of the internal
data registers.
For each dataireg or dataqreg bit value of 1, a mapping to the fixed-point number
(represented by a 1 sign bit and (Width −1) fractional bits) closest to the negative
value of the square root of 1/2 (that is, −0.7071067811..) is done. Conversely, for
each dataireg or dataqreg bit value of 0, a mapping to the fixed point number
(represented by a 1 sign bit and (Width −1) fractional bits) closest to the square root
of 1/2 (that is, +0.7071067811..) is done.
For example, with Width = 8, mapping will be done in the following manner.

Advanced Design System 2011.01 - Numeric Components

321

dataireg dataqreg --> Output Iout Output Qout

0 0 --> 01011011 01011011

0 1 --> 01011011 10100101

1 0 --> 10100101 01011011

1 1 --> 10100101 10100101

Note that, with 1 sign bit and 7 fractional bits twos-complement:

01011011 corresponds to 0.7109375
10100101 corresponds to −0.7109375

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

322

 Or2Syn

Description: 2-input OR
Library: Numeric, Fixed-Point DSP
Class: SDFOr2Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of bus segment within the input bus 8 int

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

This model is a 2-input OR gate. It takes a bitwise OR of its inputs A and B (both of1.
bitwidth Width) and outputs the results, that is, Result = A OR B.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

323

 OrSyn

Description: Bitwise OR
Library: Numeric, Fixed-Point DSP
Class: SDFOrSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of bus segment within input bus 8 int

Size number of bus segments within input bus 2 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

The input bus is composed of Size number of smaller bus segments. Each bus1.
segment within the input bus is of bitwidth Width. OrSyn performs a bitwise OR of
the bus segments resulting in the output result of bitwidth Width. For example, if
Width = 8, Size = 2 means that the input bus is interpreted as having 2 bus
segments, each of bitwidth 8. The output of OrSyn is the bitwise OR of the 2 bus
segments, as illustrated below.

 Width = 8, Size = 2

An example design where two 8-bit signals are ORed together is shown below.2.

 OrSyn Example Design

Advanced Design System 2011.01 - Numeric Components

324

For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

325

 PI4DQPSKSyn

Description: Pi/4 DQPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFPI4DQPSKSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width bit width of encoder outputs 8 int

 Pin Inputs

Pin Name Description Signal Type

1 DataI fix

2 DataQ fix

3 Clock fix

4 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

5 Iout fix

6 Qout fix

 Notes/Equations

The 2 output signals of the /4-DQPSK encoder are twos-complement fixed- point1.
numbers with 1 sign bit and (Width-1) fractional bits Iout and Qout.
In-phase and Quadrature-phase data inputs DataI, DataQ are clocked into internal
registers on the positive Clock edge. Outputs Iout and Qout are rotated in phase
increments that are multiples of /4 (that is, multiples of 45 degrees) depending on
the values of DataI and DataQ. Phase rotations are specified in Phase Rotations.
Input DataI Input DataQ Rotate (Iout, Qout) by

0 0 +Π/4 (+45 deg)

0 1 −Π/4 (−45 deg)

1 0 +3Π/4 (+135 deg)

1 1 −3Π/4 (-135 deg)

Assertion of the Set input (a low value, i.e. 0) will clear the values of the internal
registers of the model and the outputs (Iout, Qout) are set to the fixed point
numbers closest to the value of (sqrt(1/2), sqrt(1/2)), where sqrt(1/2) denotes the
square root of 1/2 (as close as can be represented by 1 sign bit and (Width-1)

Advanced Design System 2011.01 - Numeric Components

326

fractional bits in twos-complement).
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

327

 PSK8Syn

Description: 8-PSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFPSK8Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width bit width of encoder outputs 8 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Iout fix

3 Qout fix

 Notes/Equations

Output signals of the 8PSK encoder are 2 twos-complement fixed-point numbers with1.
1 sign bit and (Width-1) fractional bits, Iout and Qout. The 3-bit input Data is
mapped to the Iout and Qout outputs according to the Data Mapping table below.

 Data Mapping

Input Data Iout (real-value) Qout (real-value)

000 value closest to
+sqrt(1/2)

value closest to
+sqrt(1/2)

001 0.0 1.0 - 2 -(Width-1)

010 -sqrt(1/2) +sqrt(1/2)

011 -1.0 + 2 -(Width-1) 0.0

100 -sqrt(1/2) -sqrt(1/2)

101 0.0 -1.0 + 2 -(Width-1)

110 +sqrt(1/2) -sqrt(1/2)

111 1.0 - 2 -(Width-1) 0.0

For example, with Width = 8, mapping will be done in the following manner:

Advanced Design System 2011.01 - Numeric Components

328

Input Data Iout (twos-compliment binary) Qout (twos-compliment binary)

000 01011011 01011011

001 00000000 01111111

010 10100101 01011011

011 10000001 00000000

100 10100101 10100101

101 00000000 10000001

110 01011011 10100101

111 01111111 00000000

Note that, with 1 sign bit and 7 fractional bits twos-complement:

01011011 corresponds to 0.7109375
10100101 corresponds to -0.7109375
01111111 corresponds to 1.0- 2 -7

10000001 corresponds to -1.0 + 2 -7

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

329

 QPSKSyn

Description: QPSK Encoder
Library: Numeric, Fixed-Point DSP
Class: SDFQPSKSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width bit width of encoder outputs 8 int

 Pin Inputs

Pin Name Description Signal Type

1 DataI fix

2 DataQ fix

 Pin Outputs

Pin Name Description Signal Type

3 Iout fix

4 Qout fix

 Notes/Equations

The output signals of the QPSK encoder are 2 twos-complement fixed-point numbers1.
with 1 sign bit and (Width −1) fractional bits, Iout and Qout.
For each DataI or DataQ input bit value of 1, a mapping to the fixed-point number
(represented by a 1 sign bit and (Width −1) fractional bits) closest to the negative
value of the square root of 1/2 (that is, −0.7071067811..) is done. Conversely, for
each DataI or DataQ input bit value of 0 a mapping to the fixed point number
(represented by a 1 sign bit and (Width-1) fractional bits) closest to the square root
of 1/2 (that is, +0.7071067811..) is done.
For example, with Width = 8, mapping will be done as in the table below.
Input DataI Input DataQ --> Output Iout Output Qout

0 0 --> 01011011 01011011

0 1 --> 01011011 10100101

1 0 --> 10100101 01011011

1 1 --> 10100101 10100101

Note that, with 1 sign bit and 7 fractional bits twos-complement:

01011011 corresponds to 0.7109375
10100101 corresponds to −0.7109375

Advanced Design System 2011.01 - Numeric Components

330

For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

331

 RamRegSyn

Description: Registered Random-Access-Memory (RAM)
Library: Numeric, Fixed-Point DSP
Class: SDFRamRegSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

Depth Number of words in RAM. 16 int

ramFile File containing initial RAM values. filename

ramFileFormat Format of RAM init file.: REAL, HEX HEX enum

 Pin Inputs

Pin Name Description Signal Type

1 Addr input address fix

2 Data input data fix

3 Clock Clock input – optional control pin fix

4 CE Clock enable input – optional control pin fix

5 WE write enable input: if low then the input Data
is

fix

 Pin Outputs

Pin Name Description Signal Type

6 Q output data fix

 Notes/Equations

This model implements a RAM with a registered output.1.
Given an input address in Addr, and data in Data, the model will write the input Data
into an internal array if WE is asserted by a low value; if WE is not asserted, the
model will put data addressed by Addr onto its output Q.
The output of the RAM is registered with a positive edge Clock input.2.
The clock enable CE control input is optional:

if it is not connected, the model is always enabled
if it is connected, it is enabled by a high value in CE.
The initial values in the RAM can be defined in the (optional) file as specified in
the ramFile parameter. The format of the file is specified by the ramFileFormat

Advanced Design System 2011.01 - Numeric Components

332

parameter; initialization values can be specified as REAL or HEX. The address of
each initial data read into the model is the same as the line number of the
corresponding data read from the initialization file.
The initial values are specified as a column of values as in the following
examples.
If ramFileFormat = REAL which specifies that the RAM initialization file contains
real values, then an example of such a file would be:
0.98
0.24
0.12
.
.
.
From this example, the model will interpret the first line as address 0 with data
equal to the fixed-point value corresponding to 0.98, and so on. Note that the
model will convert the real values to its fixed-point representation using the
specified precision in the OutputPrecision parameter, and arithmetic type as
specified in the ArithType parameter.
If ramFileFormat = HEX, then an example of such a file would be:
0x7f
0x06
0x08
.
.
.
From this example, the model will interpret the first line as address 0 with data
equal to 0x7f, and so on.

The Depth parameter specifies the number of words in the RAM.3.
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

333

 RamSyn

Description: RAM
Library: Numeric, Fixed-Point DSP
Class: SDFRamSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

Depth size of (number of words in) RAM 16 int

ramFile name of file containing initial RAM values (optional)
(represented in hex data format in file)

 filename

 Pin Inputs

Pin Name Description Signal Type

1 Addr input address fix

2 Data input data fix

3 WE write enable input: if low then the input Data
is

fix

 Pin Outputs

Pin Name Description Signal Type

4 Q output data fix

 Notes/Equations

RamSyn models the RAM. Data in the RAM can be initialized by specifying the file1.
name in the ramFile parameter.
The path name for ramFile can be specified in several ways: one is to just specify the2.
file name, for example ramFile = foo, which is assumed to be located within the
current workspace data directory; another is to specify the absolute path, as in
ramFile = /usr/user_name/foo; or, the environmental variables can also be used to
set the file path name, for example ramFile = $ENV_FOO/foo, where ENV_FOO is an
environmental variable.
The bitwidths and arithmetic type of the output data are defined by the device3.
parameters. The size of the RAM is specified by the Depth parameter. An example file
format is:
0x01
0xff

Advanced Design System 2011.01 - Numeric Components

334

0xca
.
.
.
and so on.
The data format in the file is assumed to be right-justified.4.
OutputPrecision specifies the fixed-point precision format of the output. For example,5.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to6.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

335

 RegSyn

Description: Data Register
Library: Numeric, Fixed-Point DSP
Class: SDFRegSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

ValueS value loaded into the register when the Set control pin is
asserted

0 int

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input fix

2 Clock Clock input - optional control pin fix

3 CE Clock enable input - optional control pin fix

4 Set Synchronous set/reset input - optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

5 Q Register data output fix

 Notes/Equations

RegSyn is positive-edge triggered and latches the input data upon detecting the1.
positive edge.
The control pins are optional; if these are not connected, the defaults will be:2.

Clock not connected, the device reverts to a unit-delay register.
CE connected and high, the input data is latched by the register upon a positive
clock edge.
CE connected and low (it holds a value of 0), the register output stays the same
and the input data is not latched.
CE not connected, the clock is enabled by default and the input data is latched
by the register upon a positive clock edge.
Set connected and low, the register output is set to the value specified by the
parameter ValueS.
Set connected and high, the register output is not set to ValueS.
Set not connected, the register output is never set to ValueS.

Advanced Design System 2011.01 - Numeric Components

336

OutputPrecision specifies the fixed-point precision format of the output. For example,3.
if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
ValueS can be specified in hex (0x prefix), octal (0 prefix),4.
binary (0b prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
0b11111 (binary).
For general information regarding numeric fixed-point DSP functions, refer to5.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

337

 RomRegSyn

Description: Registered Read-Only-Memory (ROM)
Library: Numeric, Fixed-Point DSP
Class: SDFRomRegSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

romFile Filename containing ROM data. filename

romFileFormat Format of ROM init file.: REAL, HEX HEX enum

Depth Number of words in ROM. 1 int

 Pin Inputs

Pin Name Description Signal Type

1 Addr fix

2 Clock Clock input – optional control pin fix

3 CE Clock enable input – optional control pin fix

4 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

5 Q fix

 Notes/Equations

This model implements a ROM with a registered output. Given an input address in1.
Addr, the model will put the data addressed by Addr onto output Q.
The output of the ROM is registered with a positive edge Clock input.2.
The clock enable CE control input is optional.

if it is not connected, the model is always enabled
if it is connected, it is enabled by a high value in CE.

The initial values in the ROM can be defined in the file specified in the romFile3.
parameter. The format of the file is specified by the romFileFormat parameter; data
can be specified as REAL or HEX values. The address of each data value read into the
model is the same as the line number of the corresponding data read from the file.
The values are specified as a column of values as in the following examples.4.
If romFileFormat = REAL which specifies that the ROM file contains real values, then

Advanced Design System 2011.01 - Numeric Components

338

an example of such a file would be:
0.98
0.24
0.12
.
.
.
From the above file example, the model will interpret the first line as address 0 with
data equal to the fixed point value corresponding to 0.98, etc. Note that the model
will convert the real values to its fixed point representation using the specified
precision in the OutputPrecision parameter, and arithmetic type as specified in the
ArithType parameter.
If romFileFormat = HEX, then an example of such a file would be:
0x7f
0x06
0x08
.
.
.
From the above file example, the model will interpret the first line as address 0 with
data equal to 0x7f, and so on.
The Depth parameter specifies the number of words in the ROM.5.
For general information regarding numeric fixed-point DSP functions, refer to6.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

339

 RomSyn

Description: ROM
Library: Numeric, Fixed-Point DSP
Class: SDFRomSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

romFile name of file containing ROM values (represented in hex data
format in file)

 filename

Depth size of (number of words in) ROM 1 int

 Pin Inputs

Pin Name Description Signal Type

1 Addr fix

 Pin Outputs

Pin Name Description Signal Type

2 Q fix

 Notes/Equations

RomSyn reads the specified file of ASCII hex values and stores them in a linear array1.
to model the ROM.
The path name for romFile can be specified in several ways: one is to just specify the2.
file name, for example romFile = foo, which is assumed to be located within the
current workspace data directory; another is to specify the absolute path, as in
romFile = /usr/user_name/foo; or, the environmental variables can also be used to
set the file path name, for example romFile = $ENV_FOO/foo, where ENV_FOO is an
environmental variable.
The input address value is used as an index into the array. An example file format:3.
0x0ff0a
0x0bcd9
.
.
.
and so on.
The data format in the file is assumed to be right-justified.4.
OutputPrecision specifies the fixed-point precision format of the output. For example,5.

Advanced Design System 2011.01 - Numeric Components

340

if OutputPrecision = 1.15, 1 bit is used for representing the integer part of the
output, and 15 bits are used to represent the fractional portion of the output.
For general information regarding numeric fixed-point DSP functions, refer to6.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

341

 SerialFIRSyn

Description: Serial Finite Impulse Response (FIR) Filter
Library: Numeric, Fixed-Point DSP
Class: SDFSerialFIRSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT,
UN_SIGNED

TWOS_COMPLEMENT enum

NumOfTaps Number of taps in FIR filter. 6 int

CoefPrecision Precision of the coefficients in the coefficient file. 2.14 precision

DataPrecision Precision of the input data. 2.14 precision

CoefFile File containing FIR coefficient values. filename

CoefFileFormat Format of FIR Coefficients file.: REAL, HEX HEX enum

 Pin Inputs

Pin Name Description Signal Type

1 DataIn Data input fix

2 BitClock Bit Clock input – Bit-rate clock fix

3 DataClock Data Clock input – input sample rate clock fix

4 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

5 Result FIR result output (with precision
OutputPrecision)

fix

 Notes/Equations

This model is a bit-serial finite impulse response (FIR) filter model. It implements a1.
bit-serial FIR structure and retains full precision internally when calculating filter
output values.
The only quantization done is at the Result output of the model.
The Result output of the bit-serial FIR model is the final result of the FIR filtering2.
done within the model, and quantized to the precision specified by OutputPrecision.
Data from DataIn input is clocked into the internal data registers of the bit-serial FIR3.
model upon the positive edge transitions of the DataClock input.
The BitClock input is used to simulate the bit-serial nature of the FIR filter; it clocks4.

Advanced Design System 2011.01 - Numeric Components

342

the result of the FIR filter into a FIFO buffer of depth equal to the total number of bits
in DataIn (as specified by the DataPrecision parameter). If the total number of bits in
DataPrecision is equal to W, there is a delay equal to W BitClock positive edges
before the FIR filter output is sent to Result.
The 1-bit Reset input pin is asserted by bring it low (a value of 1), which will clear all5.
the internal data registers.
The filter tap coefficients of the bit-serial FIR filter is defined in the file specified in6.
the CoefFile parameter. The format of the file is specified by the CoefFileFormat
parameter; tap coefficients can be specified as REAL or HEX values. The tap
coefficients are specified as a column of values in the file. The 0th tap filter
coefficient is the value on the first line of the filter tap coefficient file; the 1th tap
filter coefficient corresponds to the value on the second line; the 2th tap filter
coefficient corresponds to the value on the third line, and so on.
Consider the following examples.

If CoefFileFormat = REAL, which specifies that the filter tap coefficient file
contains real values for the filter tap coefficients, an example of such a file
would be:
0.98
0.24
0.12
0.05
-0.13
0.21
.
.
.
If CoefFileFormat = HEX, which specifies that the filter tap coefficient file
contains hex values for the filter tap coefficients, an example of such a file would
be:
0x7f
0x06
0x02
0x8f
0x07
0x08
.
.
.

The NumTaps parameter specifies the number of tap coefficients to be read from the7.
file specified by CoefFile.
The CoefPrecision parameter specifies the precision of the filter tap coefficients, that8.
is, the number of integer bits (including the sign bit) and the number of fractional
bits to be used to represent the filter tap coefficients.
For general information regarding numeric fixed-point DSP functions, refer to9.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

343

 ShiftRegPPSyn

Description: Parallel In/Parallel Out Shift Register
Library: Numeric, Fixed-Point DSP
Class: SDFShiftRegPPSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width number of bits in internal state of shift register 16 int

Dir direction of bit shift: RIGHT, LEFT LEFT enum

ValueS value loaded into the register when the Set control pin is
asserted

0 int

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input fix

2 Serin Serial bit input fix

3 Clock Clock input – optional control pin fix

4 Load Load control input – optional control pin fix

5 Shift Shift control input – optional control pin fix

6 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

7 Q Shifted data
output

fix

 Notes/Equations

ShiftRegPPSyn (Parallel_In/Parallel_Out) clock is positive-edge triggered and shifts1.
the internal register data upon detecting the positive edge.
Direction of shifting is done assuming that the MSB is on the left and the LSB is on2.
the right. For example, if Dir = LEFT, then shifting is done toward the MSB;
conversely, if Dir = RIGHT, then shifting is done toward the LSB.
ValueS can be specified in hex (0x prefix), octal (0 prefix),3.
binary (0b prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
0b11111 (binary).
For general information regarding numeric fixed-point DSP functions, refer to4.

Advanced Design System 2011.01 - Numeric Components

344

Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

345

 ShiftRegPSSyn

Description: Parallel In/Serial Out Shift Register
Library: Numeric, Fixed-Point DSP
Class: SDFShiftRegPSSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width number of bits in internal state of shift register 16 int

Dir direction of bit shift: RIGHT, LEFT LEFT enum

ValueS value loaded into the register when the Set control pin is
asserted

0 int

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input fix

2 Clock Clock input – optional control pin fix

3 Load Load control input – optional control pin fix

4 Shift Shift control input – optional control pin fix

5 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

6 Q Shifted data
output

fix

 Notes/Equations

ShiftRegPSSyn (Parallel_In/Serial_Out) clock is positive-edge triggered and shifts the1.
internal register data upon detecting the positive edge.
Direction of shifting is done assuming that the MSB is on the left and the LSB is on2.
the right. For example, if Dir = LEFT, then shifting is done toward the MSB;
conversely, if Dir = RIGHT, then shifting is done toward the LSB.
For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

346

 ShiftRegSPSyn

Description: Serial In/Parallel Out Shift Register
Library: Numeric, Fixed-Point DSP
Class: SDFShiftRegSPSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width number of bits in internal state of shift register 16 int

Dir direction of bit shift: RIGHT, LEFT LEFT enum

ValueS value loaded into the register when the set control pin is asserted 0 int

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input fix

2 Clock Clock input – optional control pin fix

3 Shift Shift control input – optional control pin fix

4 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

5 Q Shifted data
output

fix

 Notes/Equations

ShiftRegSPSyn (Serial_In/Parallel_Out) clock is positive-edge triggered and shifts the1.
internal register data upon detecting the positive edge.
Direction of shifting is done assuming that the MSB is on the left and the LSB is on2.
the right. For example, if Dir = LEFT, then shifting is done toward the MSB;
conversely, if Dir = RIGHT, then shifting is done toward the LSB.
ValueS can be specified in hex (0x prefix), octal (0 prefix),3.
binary (0b prefix), or decimal (without a 0 prefix).
For example, to specify a ValueS of decimal value 31, set
ValueS = 31 (decimal), ValueS = 0x1F (hex), ValueS = 037 (octal), or ValueS =
0b11111 (binary).
For general information regarding numeric fixed-point DSP functions, refer to4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

347

 SineCosineSyn

Description: Sine/Cosine Look-up Table
Library: Numeric, Fixed-Point DSP
Class: SDFSineCosineSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutWidth Output width of NCO. 10 int

PhaseInWidth Width of PhaseIn
input.

10 int

 Pin Inputs

Pin Name Description Signal Type

1 PhaseIn Phase input – unsigned fix

2 Clock Clock input – optional control pin fix

3 SineOrCosine SineOrCosine – controls whether sine or cosine is
output

fix

 Pin Outputs

Pin Name Description Signal Type

4 Out fix

 Notes/Equations

This model implements a sine or cosine look-up table; given an input phase value, it1.
outputs a fixed point value (1 sign bit, (OutWidth-1) fractional bits twos-
complement) corresponding to the Sine or Cosine of the phase.
The (optional) 1-bit control input SineOrCosine determines whether a sine or cosine2.
value is evaluated by the model.

If the SineOrCosine pin is un-connected (in other words, unused) then the
default output of the model is a sine value.
If the SineOrCosine pin is connected, then a low value (corresponding to 0) will
cause the model to output a cosine value, and, conversely a high value
(corresponding to 1) will cause the model to output a sine value.

The input phase value in PhaseIn is interpreted within the model as an unsigned fixed3.
point number (with PhaseInWidth integer bits, and no fractional bits) and the value of
sine(2π × PhaseIn/(2 PhaseInWidth)) or cosine(2π × PhaseIn/(2 PhaseInWidth)) is
evaluated, and output. The output value in Out is represented as a twos-
complement, 1-sign bit, (OutWidth-1) fractional bits, fixed point number.
For general information regarding numeric fixed-point DSP functions, refer to

Advanced Design System 2011.01 - Numeric Components

348

4.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

349

 SinkRespSyn

Description: Response Sink
Library: Numeric, Fixed-Point DSP
Class: SDFSinkStimSyn

 Parameters

Name Description Default Type

Start sample number at which to start recording DefaultNumericStart int

Stop sample number at which to stop recording DefaultNumericStop int

 Pin Inputs

Pin Name Description Signal Type

1 input input signal fix

 Notes/Equations

SinkRespSyn collects Fix data for test vector responses.1.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

350

 SinkStimSyn

Description: Stimulus Sink
Library: Numeric, Fixed-Point DSP
Class: SDFSinkStimSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Start sample number at which to start recording DefaultNumericStart int

Stop sample number at which to stop recording DefaultNumericStop int

 Pin Inputs

Pin Name Description Signal Type

1 input input signal fix

 Notes/Equations

SinkStimSyn collects Fix data for test vector stimulus.1.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

351

 SubRegSyn

Description: Registered Subtracter
Library: Numeric, Fixed-Point DSP
Class: SDFSubRegSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

OvflowType overflow characteristic for device: WRAPPED, SATURATE WRAPPED enum

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

3 Clock Clock input – optional control pin fix

4 CE Clock enable input – optional control pin fix

5 Set Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

6 Result fix

 Notes/Equations

This model is a registered subtracter. It calculates the subtraction of its A and B data1.
inputs (A-B) and registers its output Result such that it has the specified precision as
set in the OutputPrecision parameter.
The Clock input is optional.2.

if it is connected, the model will operate based on the positive edge transitions
of the Clock input.
if it is not connected, the model will operate as if every sample step of the
simulator is a positive edge transition.

Assertion of the Reset input by bringing it low (a value of 0) will clear the output data3.
register.
The (optional) CE input is the clock-enable control for the output data register.4.

if it is connected and has a high value (a value of 1), the output data register is

Advanced Design System 2011.01 - Numeric Components

352

enabled and will load the addition result upon a positive Clock edge.
if it is connected, and low (a value of 0), the clock to the output data register is
disabled.
if the CE input is not connected, the output data register is always enabled.

For general information regarding numeric fixed-point DSP functions, refer to5.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

353

 SymFIRSyn

Description: Symmetric Finite Impulse Response (FIR) Filter
Library: Numeric, Fixed-Point DSP
Class: SDFSymFIRSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

OutputPrecision precision of the output in bits 2.14 precision

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

NumOfTaps Number of taps in FIR filter. 2 int

CoefPrecision Precision of the coefficients in the coefficient file. 2.14 precision

DataPrecision Precision of the MidDataOut output (used in cascading FIR
filters).

2.14 precision

CoefFile File containing FIR coefficient values. filename

CoefFileFormat Format of FIR Coefficients file.: REAL, HEX HEX enum

CascadeMode Use filter in cascade mode? NO, YES NO enum

SymmetricMode Is filter symmetric or anti-symmetric? SYMMETRIC,
ANTI_SYMMETRIC

SYMMETRIC enum

 Pin Inputs

Pin Name Description Signal Type

1 DataIn Data input fix

2 Clock Clock input – optional control pin fix

3 Set Asynchronous set/reset input – optional control pin fix

4 MidDataIn Mid point data input (optional) (with precision = precision of DataIn
input)

fix

 Pin Outputs

Pin Name Description Signal
Type

5 Result FIR result output (with precision OutputPrecision) fix

6 DataOut End point data output (with precision DataPrecision = precision of DataIn
input)

fix

7 MidDataOut Mid point data output (with precision DataPrecision = precision of DataIn
input)

fix

 Notes/Equations

This model is a symmetric FIR (finite impulse response) filter model. It implements a1.

Advanced Design System 2011.01 - Numeric Components

354

general parallel FIR structure with symmetric filter tap coefficients. It retains full
precision internally when calculating filter output values. The only quantization done
is at the Result output of the model.

 Internal Structure of Symmetric FIR Model

Data from DataIn input is clocked into the internal data registers of the FIR model2.
upon the positive edge transitions of the Clock input if the Clock pin is connected. If
the Clock pin is not connected, then data is shifted into the internal data registers at
every sample step in the simulator.
The (optional) input MidDataIn and outputs MidDataOut and DataOut are used when3.
cascading several symmetric FIR models. Cascading may be desirable in the case
where there is a limit on the FIR filter order per Symmetric FIR model, which is the
case in the Xilinx CORE Generator Symmetric FIR filter that is limited, at most, to 20
filter taps per Symmetric FIR core.
The parameter CascadeMode should be set to YES if the model is to be cascaded to
feed another Symmetric FIR model or NO if it does not feed into another Symmetric
FIR model. If CascadeMode is set to NO for no cascading, then (internally within the
model), the MidDataIn input takes its input data from the MidDataOut output of the
model.
Cascading of several Symmetric FIR filter models is illustrated below.

 Cascading of Several Symmetric FIR Filter Models

The parameter SymmetricMode is used to select whether the FIR filter coefficients4.
are symmetric or anti-symmetric.
The Result output of the symmetric FIR model is the final result of the FIR filtering5.
done within the model, and quantized to the precision specified by OutputPrecision.
The 1-bit Reset input pin is asserted by bring it low (i.e., value of 1), which will clear6.
all the internal data registers.
Since the filter is symmetric or anti-symmetric, only the first half of the filter tap7.
coefficients need to be defined in the filter definition file.
The filter tap coefficients of the FIR filter is defined in the file as specified in the

Advanced Design System 2011.01 - Numeric Components

355

CoefFile parameter. The format of the file is specified by the CoefFileFormat
parameter; the tap coefficients can be specified as real or hex values. The tap
coefficients are specified as a column of values in the file. The 0th tap filter
coefficient is the value on the first line of the filter tap coefficient file, the 1th tap
filter coefficient corresponds to the value on the second line, the 2th tap filter
coefficient corresponds to the value on the third line, and so on.
Consider the following examples.

If CoefFileFormat = REAL, which specifies that the filter tap coefficient file
contains real values for the filter tap coefficients, then an example of such a file
would be:
0.98
0.24
0.12
0.05
-0.13
0.21
.
.
.
if CoefFileFormat = HEX, which specifies that the filter tap coefficient file
contains hex values for the filter tap coefficients, then an example of such a file
would be:
0x7f
0x06
0x02
0x8f
0x07
0x08
.
.
.

The NumTaps parameter specifies the number of tap coefficients to be read from the8.
file specified by CoefFile.
The CoefPrecision parameter specifies the precision of the filter tap coefficients, that9.
is, the number of integer bits (including the sign bit) and the number of fractional
bits to be used to represent the filter tap coefficients.
For general information regarding numeric fixed-point DSP functions, refer to10.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

356

 Xor2Syn

Description: 2-input XOR
Library: Numeric, Fixed-Point DSP
Class: SDFXor2Syn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width Width of an input
bus.

8 int

 Pin Inputs

Pin Name Description Signal Type

1 A fix

2 B fix

 Pin Outputs

Pin Name Description Signal Type

3 Result fix

 Notes/Equations

This model is a 2-input XOR gate. It takes a bitwise XOR of inputs A and B (both of1.
bitwidth Width) and outputs the results, that is, Result = A XOR B.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

357

 XorSyn

Description: Bitwise XOR
Library: Numeric, Fixed-Point DSP
Class: SDFXorSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

Width size of a bus segment within the input bus 8 int

Size number of bus segments within the input
bus

2 int

 Pin Inputs

Pin Name Description Signal Type

1 Data fix

 Pin Outputs

Pin Name Description Signal Type

2 Result fix

 Notes/Equations

The input bus is composed of Size number of smaller bus segments. Each bus1.
segment within the input bus is of bitwidth Width. XorSyn performs a bitwise XOR of
the bus segments resulting in the output Result of bitwidth Width. For example,
Width = 8, Size = 2 means that the input bus is interpreted as having 2 bus
segments, each of bitwidth 8. The output of XorSyn is the bitwise XOR of the 2 bus
segments, as illustrated in the figure below.

 Width = 8, Size = 2

An example design where two 8-bit signals are XORed together is shown below.2.

Advanced Design System 2011.01 - Numeric Components

358

 XorSyn Example

For general information regarding numeric fixed-point DSP functions, refer to3.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

359

 ZeroInterpSyn

Description: Zero insertion interpolator
Library: Numeric, Fixed-Point DSP
Class: SDFZeroInterpSyn
Derived From: SDFHPFix

 Parameters

Name Description Default Type

ArithType arithmetic type of output: TWOS_COMPLEMENT, UN_SIGNED TWOS_COMPLEMENT enum

UpSampleRatio Up-sample ratio 2 int

DataPrecision Precision of output data – its bitwidth must equal input data
bitwidth

2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 Data Data input fix

2 Clock Clock input fix

3 Reset Asynchronous set/reset input – optional control pin fix

 Pin Outputs

Pin Name Description Signal Type

4 Result Clock output fix

 Notes/Equations

This model is a data interpolator. It performs an upsampling of the input data by1.
inserting extra zeros (UpSampleRatio −1 zeros) for each input data. For example,
given an input value of 0x1F, with UpSampleRatio equal to 2 (meaning this model is
upsampling by 2), the output Result will give the values 0x1F, 0.
For general information regarding numeric fixed-point DSP functions, refer to2.
Numeric Fixed-Point DSP Components (numeric).

Advanced Design System 2011.01 - Numeric Components

360

 Numeric Logic Components
DFF (numeric)
DivByN (numeric)
JKFF (numeric)
LFSR (numeric)
Logic (numeric)
LogicAND (numeric)
LogicAND2 (numeric)
LogicInverter (numeric)
LogicLatch (numeric)
LogicNAND (numeric)
LogicNAND2 (numeric)
LogicNOR (numeric)
LogicNOR2 (numeric)
LogicOR (numeric)
LogicOR2 (numeric)
LogicXNOR (numeric)
LogicXNOR2 (numeric)
LogicXOR (numeric)
LogicXOR2 (numeric)
Multiple (numeric)
Test (numeric)
TestEQ (numeric)
TestGE (numeric)
TestGT (numeric)
TestLE (numeric)
TestLT (numeric)
TestNE (numeric)

The Numeric Logic component library contains operators on Boolean valued integer signals
(values are either 0 or 1) or double precision floating-point (real) signals. Each component
produces Boolean integer values. Positive logic is used: low (or false) = 0, high (or true) =
1.

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. For details
on conversions between different classes of signals, refer to Conversion of Data Types
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

Advanced Design System 2011.01 - Numeric Components

361

 DFF

Description: D-Type Binary Data Flip-Flop (Edge Triggered)
Library: Numeric, Logic
Class: SDFDFF
Derived From: baseOmniSysNumericStar

 Pin Inputs

Pin Name Description Signal Type

1 R clear input int

2 C clock input int

3 D D input int

4 S preset input int

 Pin Outputs

Pin Name Description Signal Type

5 Q Q output int

6 NQ inverted Q output int

 Notes/Equations

Function table1.
Inputs Outputs

R (Pin 1) C (Pin 2) D (Pin 3 S (Pin 4) Q (Pin 5) NQ (Pin 6)

H x x L H L

L x x H L H

L x x L H H

H UP H H H L

H UP L H L H

H L x H Q0 NQ0

whereS = input preset, active with logic low levelR = input clear, active with logic low levelC = input
clock, active with low to high transitionx = don't care stateL = logic low level. Input: < 0.5; Output:
0.0H = logic high level. Input: > 0.5; Output: 1.0UP = low-to-high transitionQ0 = previous Q stateNQ
= inverted Q stateNQ0 = previous inverted Q state

At the first sample, the outputs Q and NQ are equal to L and H, respectively.2.
Input, output and clock signal values of the DFF component, with S (pin 4) and R (pin3.
1) both tied to a high logic level, are shown below.

Advanced Design System 2011.01 - Numeric Components

362

 DFF Input, Output, and Clock Signal Values

For general information regarding numeric logic component signals, refer to Numeric4.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

363

 DivByN

Description: Binary Data Divide-By-N Counter
Library: Numeric, Logic
Class: SDFDivByN
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

N divide-by factor 1 int [1, ∞)

N0 initial counter value 0 int [0, N)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal int

 Pin Outputs

Pin Name Description Signal Type

2 output output signal int

 Notes/Equations

DivByN is a model of a positive edge-triggered, modulo N down counter. The input to1.
the component is a clock signal; the output is a signal that is high or low, depending
on whether the current counter value is greater or less than floor (N/2). (Note that
the counter value itself is not available as an output.)
Let M(k) denote the counter value after the _k_th positive clock edge. Then
M(0) = N0
M(k) = (M(k − 1) − 1) modulo N, k ≥ 1

The input and output signal values of the DivByN component, parameters N = 5 and2.
N0 = 4, are shown in DivByN Input and Output Signal Values, N = 5 and N0 = 4.
Note that the initial counter value is 4, and therefore the output is low (because it is
≥ 2 (floor(5/2)). When the first input positive edge occurs, the counter is
decremented to 3 and the output is still low. At the second input positive edge, the
counter is decremented to 2 and the output is low. At the third positive edge the

Advanced Design System 2011.01 - Numeric Components

364

counter is decremented to 1, which makes the output high (because it is < 2
(floor(N/2))). Similarly, at the fourth positive edge, the counter decrements to 0 and
the output is high. At the fifth positive edge, the counter decrements to negative and
is therefore reset to 4 and the output is low.
The input and output signal values of the DivByN component, parameters N = 5 and
N0 = 1, are shown in DivByN Input and Output Signal Values, N = 5 and N0 = 1.
Note that the initial counter value is 1, and therefore the output is high (because it is
< 2 (floor(5/2)). At the first input positive edge, the counter is decremented to 0,
which means that the output is still high. At the second positive edge the counter is
reset to 4 and the output is low.

 DivByN Input and Output Signal Values, N = 5 and N0 = 4

 DivByN Input and Output Signal Values, N = 5 and N0 = 1

For general information regarding numeric logic component signals, refer to Numeric3.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

365

 JKFF

Description: Binary Data J-K Type Flip-Flop
Library: Numeric, Logic
Class: SDFJKFF
Derived From: baseOmniSysNumericStar

 Pin Inputs

Pin Name Description Signal Type

1 R clear input int

2 K K input int

3 C clock input int

4 J J input int

5 S preset input int

 Pin Outputs

Pin Name Description Signal Type

6 Q Q output int

7 NQ inverted Q output int

 Notes/Equations

Function table:1.

Input Output

R (pin 1) K (pin 2) C (pin 3) J (pin 4) S (pin 5) Q (pin 6) NQ (pin 7)

L x x x L H H

H x x x L H L

L x x x H L H

H L UP L H Q0 NQ0

H L UP H H H L

H H UP L H L H

H H UP H H TOGGLE

whereC = input clock, active with low to high transitionS = input preset, active with logic low levelR =
input clear, active with logic low levelx = don't care stateL = logic low level; Inputs < 0.5; Outputs
0.0H = logic high level; Inputs ≥ 0.5; Outputs 1.0UP = low-to-high transitionQ0 = previous Q stateNQ
= inverted Q stateNQ0 = previous inverted Q state

At the first sample, the outputs Q and NQ are equal to L and H, respectively.2.
The input and output signal values of the JKFF component, with S (pin 5) and R (pin3.

Advanced Design System 2011.01 - Numeric Components

366

1) both tied to a high logic level, are shown in JKFF Input and Output Signal Values.
The clock signal (not shown) is set such that it is first active (low to high transition
occurs) at the first 0.5 grid unit and has a period of 1 grid unit.

 JKFF Input and Output Signal Values

For general information regarding numeric logic component signals, refer to Numeric4.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

367

 LFSR

Description: Linear feedback shift register
Library: Numeric, Logic
Class: SDFLFSR
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

Seed initial value loaded into the shift register 1 int
array

FeedbackList tap positions for non-zero feedback
coefficients

7 3 2 1 int
array

 Pin Inputs

Pin Name Description Signal Type

1 clock clock signal int

 Pin Outputs

Pin Name Description Signal Type

2 output output signal int

 Notes/Equations

The linear feedback shift register component can be used to generate PN sequences1.
with user-defined recurrence relations. The input to the LFSR is a clock signal. A new
bit value is generated at the output every time the input signal transitions from 0 to
1. The diagram below illustrates an LFSR model.

 LFSR Model

Advanced Design System 2011.01 - Numeric Components

368

Data is shifted to the right in the shift register. The length of the shift register is r.
The numbers a(1), a(2), ... , a(r) are the binary feedback coefficients specified by
FeedbackList.
The shift register length r is defined by the largest value in FeedbackList. For
example, a FeedbackList of 7 3 2 1 results in a shift register length of 7; the
maximum value allowed in FeedbackList is 31, which results in a maximum shift
register length of 31.
The initial contents of the shift register are specified by the value of Seed. The
maximum meaningful value for Seed is 2r − 1 for a specific FeedbackList. The
maximum Seed value allowed is 231 − 1.
The following equations describe the operation of LFSR.

where
D(0) = Seed 2 (0)

D(−1) = Seed 2 (1)

.

.

.
D(1 − r) = Seed 2 (r − 1)

and

where
Seed 2 (k) Œ{0,1} for 0 ≤ k < r

Example: Let Seed = 2, and r = 7
Then
Seed 2 (0) = 0

Seed 2 (1) = 1

Seed 2 (2) = 0

.

.

.
Seed 2 (6) = 0

Therefore,
D(0) = Seed 2 (0) = 0

D(−1) = Seed 2 (1) = 1

D(−2) = Seed 2 (2) = 0

.

.

.
D(−6) = Seed 2 (6) = 0

The binary feedback coefficients are specified by FeedbackList, which is a list of2.

Advanced Design System 2011.01 - Numeric Components

369

feedback coefficients. The coefficients are specified by listing the locations where the
feedback coefficients equal 1. For example, the recurrence relation
D(n) = (D(n − 7) + D(n − 3) + D(n − 2) + D(n − 1))mod 2
is specified by the list [7, 3, 2, 1].
The table below includes an extensive list of feedback coefficients for linear feedback
shift registers showing one or more alternate feedback connections for a given
number of stages.

 Feedback Connections for Linear m-Sequences

Number
of Stages

Code Length Maximal Taps

2 a 3 [2, 1]

3 a 7 [3, 1]

4 15 [4, 1]

5 a 31 [5, 2] [5, 4, 3, 2] [5, 4, 2, 1]

6 63 [6, 1] [6, 5, 2, 1,] [6, 5, 3, 2,]

7 a 127 [7, 1] [7, 3] [7, 3, 2, 1,] [7, 4, 3, 2,] [7, 6, 4, 2] [7, 6, 3, 1]
[7, 6, 5, 2] [7, 6, 5, 4, 2, 1] [7, 5, 4, 3, 2, 1]

8 255 [8, 4, 3, 2] [8, 6, 5, 3] [8, 6, 5, 2] [8, 5, 3, 1] [8, 6, 5, 1] [8,
7, 6, 1] [8, 7, 6, 5, 2, 1] [8, 6, 4, 3, 2, 1]

9 511 [9, 4] [9, 6, 4, 3] [9, 8, 5, 4] [9, 8, 4, 1] [9, 5, 3, 2] [9, 8, 6,
5] [9, 8, 7, 2] [9, 6, 5, 4, 2] [9, 7, 6, 4, 3, 1] [9, 8, 7, 6, 5,
3]

10 1023 [10, 3] [10, 8, 3, 2] [10, 4, 3, 1] [10, 8, 5, 1] [10, 8, 5, 4]
[10, 9, 4, 1] [10, 8, 4, 3] [10, 5, 3, 2] [10, 5, 2, 1] [10, 9, 4,
2]

11 2047 [11, 2] [11, 8, 5, 2] [11, 7, 3, 2] [11, 5, 3, 5] [11, 10, 3, 2]
[11, 6, 5, 1] [11, 5, 3, 1] [11, 9, 4, 1] [11, 8, 6, 2] [11, 9, 8,
3]

12 4095 [12, 6, 4, 1] [12, 9, 3, 2] [12, 11, 10, 5, 2, 1] [12, 11, 6, 4,
2, 1] [12, 11, 9, 7, 6, 5] [12, 11, 9, 5, 3, 1] [12, 11, 9, 8, 7,
4] [12, 11, 9, 7, 6, 5] [12, 9, 8, 3, 2, 1] [12, 10, 9, 8, 6, 2]

13 a 8191 [13, 4, 3, 1] [13, 10, 9, 7, 5, 4] [13, 11, 8, 7, 4, 1] [13, 12,
8, 7, 6, 5] [13, 9, 8, 7, 5, 1] [13, 12, 6, 5, 4, 3] [13, 12, 11,
9, 5, 3] [13, 12, 11, 5, 2, 1] [13, 12, 9, 8, 4, 2] [13, 8, 7, 4,
3, 2]

14 16,383 [14, 12, 2, 1] [14, 13, 4, 2] [14, 13, 11, 9] [14, 10, 6, 1]
[14, 11, 6, 1] [14, 12, 11, 1] [14, 6, 4, 2] [14, 11, 9, 6, 5, 2]
[14, 13, 6, 5, 3, 1] [14, 13, 12, 8, 4, 1] [14, 8, 7, 6, 4, 2]
[14, 10, 6, 5, 4, 1] [14, 13, 12, 7, 6, 3] [14, 13, 11, 10, 8, 3]

15 32,767 [15, 1] [15, 4] [15, 13, 10, 9] [15, 13, 10, 1] [15, 14, 9, 2]
[15, 9, 4, 1] [15, 12, 3, 1] [15, 10, 5, 4] [15, 10, 5, 4, 3, 2]
[15, 11, 7, 6, 2, 1] [15, 7, 6, 3, 2, 1][15, 10, 9, 8, 5, 3] [15,
12, 5, 4, 3, 2] [15, 10, 9, 7, 5, 3] [15, 13, 12, 10] [15, 13,
10, 2] [15, 12, 9, 1] [15, 14, 12, 2] [15, 13, 9, 6] [15, 7, 4,
1] [15, 13, 7, 4]

16 65,535 [16, 12, 3, 1] [16, 12, 9, 6] [16, 9, 4, 3] [16, 12, 7, 2] [16,
10, 7, 6] [16, 15, 7, 2] [16, 9, 5, 2] [16, 13, 9, 6] [16, 15, 4,
2] [16, 15, 9, 4]

17 a 131,071 [17, 3] [17, 3, 2] [17, 7, 4, 3] [17, 16, 3, 1] [17, 12, 6, 3, 2,
1] [17, 8, 7, 6, 4, 3] [17, 11, 8, 6, 4, 2] [17, 9, 8, 6, 4, 1]
[17, 16, 14, 10, 3, 2] [17, 12, 11, 8, 5, 2]

Advanced Design System 2011.01 - Numeric Components

370

18 262,143 [18, 7] [18, 10, 7, 5] [18, 13, 11, 9, 8, 7, 6, 3] [18, 17, 16,
15, 10, 9, 8, 7] [18, 15, 12, 11, 9, 8, 7, 6]

19 a 524,287 [19, 5, 2, 1] [19, 13, 8, 5, 4, 3] [19, 12, 10, 9, 7, 3] [19, 17,
15, 14, 13, 12, 6, 1] [19, 17, 15, 14, 13, 9, 8, 4, 2, 1] [19,
16, 13, 11, 19, 9, 4, 1] [19, 9, 8, 7, 6, 3] [19, 16, 15, 13, 12,
9, 5, 4, 2, 1] [19, 18, 15, 14, 11, 10, 8, 5, 3, 2] [19, 18, 17,
16, 12, 7, 6, 5, 3, 1]

20 1, 048,575 [20, 3] [20, 9, 5, 3] [20, 19, 4, 3] [20, 11, 8, 6, 3, 2] [20,
17, 14, 10, 7, 4, 3, 2]

21 2,097,151 [21, 2] [21, 14, 7, 2] [21, 13, 5, 2] [21, 14, 7, 6, 3, 2] [21,
8, 7, 4, 3, 2] [21, 10, 6, 4, 3, 2] [21, 15, 10, 9, 5, 4, 3, 2]
[21, 14, 12, 7, 6, 4, 3, 2] [21, 20, 19, 18, 5, 4, 3, 2]

22 4,194,303 [22,1] [22, 9, 5, 1] [22, 20, 18, 16,6, 4, 2, 1] [22, 19, 16,
13, 10, 7, 4, 1] [22, 17, 9, 7, 2, 1] [22, 17, 13, 12, 8, 7, 2,
1] [22, 14, 13, 12, 7, 3, 2, 1]

23 8,388,607 [23, 5] [23, 17, 11, 5] [23, 5, 4, 1] [23, 12, 5, 4] [23, 21, 7,
5] [23, 16, 13, 6, 5, 3] [23, 11, 10, 7, 6, 5] [23, 15, 10, 9, 7,
5, 4, 3] [23, 17, 11, 9, 8, 5, 4, 1] [23, 18, 16, 13, 11, 8, 5,
2]

24 16,777,215 [24, 7, 2] [24, 4, 3, 1] [24, 22, 20, 18, 16, 14, 11, 9, 8, 7, 5,
4] [24, 21, 19, 18, 17, 16, 15, 14, 13, 10, 9, 5, 4, 1]

25 33,554, 431 [25, 3] [25, 3, 2, 1] [25, 20, 5, 3] [25, 12, 5, 4] [25, 17, 10,
3, 2, 1] [25, 23, 21, 19, 9, 7, 5, 3] [25, 18, 12, 11, 6, 5, 4]
[25, 20, 16, 11, 5, 3, 2, 1] [25, 12, 11, 8, 7, 6, 4, 3]

26 67,108,863 [26, 6, 2, 1] [26, 22, 21, 16, 12, 11, 10, 8, 5, 4, 3, 1]

27 134,217,727 [27, 5, 2, 1] [27, 18, 11, 10, 9, 5, 4, 3]

28 268,435,455 [28, 3] [28, 13, 11, 9, 5, 3] [28, 22, 11, 10, 4, 3] [28, 24,
20, 16, 12, 8, 4, 3, 2, 1]

29 536,870,911 [29, 2] [29, 20, 11, 2] [29, 13, 7, 2] [29, 21, 5, 2] [29, 26,
5, 2] [29, 19, 16, 6, 3, 2] [29, 18, 14, 6, 3, 2]

30 1,073,741,823 [30, 23, 2, 1] [30, 6, 4, 1] [30, 24, 20, 16, 14, 13, 11, 7, 2,
1]

31 a 2,147,483,647 [31, 29, 21, 17] [31, 28, 19, 15] [31, 3] [31, 3, 2, 1] [31, 13,
8, 3] [31, 21, 12, 3, 2, 1] [31, 20, 18, 7, 5, 3] [31, 30, 29,
25] [31, 28, 24, 10] [31, 20, 15, 5, 4, 3] [31, 16, 8, 4, 3, 2]

32 4,294,967,295 [32, 22, 2, 1] [32, 7, 5, 3, 2, 1] [32, 28, 19, 18, 16, 14, 11,
10, 9, 6, 5, 1]

33 8,589,934,591 [33, 13] [33, 22, 13, 11] [33, 26, 14, 10] [33, 6, 4, 1] [33,
22, 16, 13, 11, 8]

34 17,179,869,183 [34,27,2,1]

35 34,359,738,367 [35,33]

36 68,719,476,735 [36,25]

37 137,438,953,471 [37,5,4,3,2,1]

38 274,877,906,943 [38,6,5,1]

39 549,755,813,887 [39,35]

40 1,099,511,627,776 [40,38,21,19]

41 2,199,023,255,551 [41,38]

42 4,398,046,511,103 [42,41,20,19]

43 8,796,093,022,207 [43,42,38,37]

44 17,592,186,044,415 [44,43,18,17]

45 35,184,372,088,831 [45,44,42,41]

46 70,368,744,177,663 [46,45,26,25]

Advanced Design System 2011.01 - Numeric Components

371

47 140,737,488,355,327 [47,42]

48 281,474,976,710,656 [48,47,21,20]

49 562,949,953,421,312 [49,40]

50 1,125,899,906,84,2623 [50,49,24,23]

51 2,251,799,813,685,248 [51,50,36,35]

52 4,503,599,627,370,496 [52,49]

53 9,007,199,254,740,991 [53,52,38,37]

54 18,014,398,509,481,983 [54,53,18,17]

55 36,028,797,018,963,967 [55,31]

56 72,057,594,037,927,935 [56,55,35,34]

57 144,115,188,075,855,871 [57,50]

58 288,230,376,151,711,743 [58,39]

59 576,460,752,303,423,488 [59,58,38,37]

60 1,152,921,504,606,846,975 [60,59]

61 2,305,843,009,213,693,951 [61, 5, 2, 1]

62 4,611,686,018,427,387,903 [62,61,6,5]

63 9,223,372,036,854,775,807 [63,62]] [[33, 13]

64 18,446,744,073,709,551,615 [64,63,61,60]

An alternative implementation of the LFSR is shown in Alternative Implementation of3.
LFSR. In order to get the same output sequence from the two implementations the
following relationships should hold between a(i) and b(i):
b(i) = a(r − i), i = 1, 2, ... , r − 1.
Implementation of 5-Stage LFSR illustrates implementation for a shift register of
length 5 and FeedbackList = "2 5".
The sequence of the LFSR states in both implementations and the output (rightmost
bit of the state) is shown in LFSR States. The initial state was assumed to be 10000.
Although the shift register in the two implementations does not go through the same
sequence of states, the output sequence is the same for both. It is also worth noting
that if the initial state is different from 10000, the output sequences may not be
exactly the same but a shifted version of each other.

 Alternative Implementation of LFSR

 Implementation of 5-Stage LFSR

Advanced Design System 2011.01 - Numeric Components

372

 LFSR States

Input and output signal voltages of the LFSR component are shown below. 4.

 LFSR Input and Output Signal Voltages

Advanced Design System 2011.01 - Numeric Components

373

This component has been upgraded in ADS2005A. In earlier versions of ADS (before5.
ADS2005A), the maximum code length was 2,147,483,647 and the number of stages
was less than 32. Starting with ADS2005A, the maximum code length is
18,446,744,073,709,551,615 and the maximum number of stages is 64.
For the Seed parameter, designers can now specify a binary sequence to set the
initial signal stages up to 64 bits. (Before ADS2005A, Seed was specified by an
integer number that limited this component to support code lengths less than 32.)
For general information regarding numeric logic component signals, refer to Numeric6.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

374

 Logic

Description: test logic
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Logic test logic: NOT, AND, NAND, OR, NOR, XOR, XNOR AND enum

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

Logic applies a logical operation to all inputs. The inputs are integers interpreted as1.
Boolean values.
The NOT operation requires only one input.2.
For general information regarding numeric logic component signals, refer to Numeric3.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

375

 LogicAND

Description: Multiple input logical AND function
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

LogicAND applies the AND logical operation to all inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

376

 LogicAND2

Description: 2-Input Logical AND Function
Library: Numeric, Logic
Class: SDFLogicAND2
C++ Code

 Pin Inputs

Pin Name Description Signal Type

1 input1 int

2 input2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

LogicAND2 applies the AND logical operation to both inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

377

 LogicInverter

Description: Logic inverter
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

LogicInverter applies the logic inversion operation on the input.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

378

 LogicLatch

Description: Logic Latch
Library: Numeric, Logic
Class: SDFLogicLatch
Derived From: baseOmniSysNumericStar

 Pin Inputs

Pin Name Description Signal Type

1 data input data int

2 clock clock signal int

 Pin Outputs

Pin Name Description Signal Type

3 output output data int

 Notes/Equations

Function table:1.

Input Output

Data (pin 1) Clock (pin 2) Q (pin 3)

L H L

H H H

x L Q0

whereClock = input clock, active with logic high levelx = don't care stateL = logic low level; Inputs <
0.5; Outputs 0.0H = logic high level; Inputs > 0.5; Outputs 1.0Q0 = previous Q state

Initially, at the first sample, the output Q is equal to L.
This component is clock level sensitive. If the designer prefers a clock edge-triggered2.
latch, the DFF component can be used with S = R = H.
The input, clock, and output signal voltages of the LogicLatch component are shown3.
below.

 LogicLatch Input and Output Signal Values

Advanced Design System 2011.01 - Numeric Components

379

For general information regarding numeric logic component signals, refer to Numeric4.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

380

 LogicNAND

Description: Multiple input logical NAND function
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

LogicNAND applies the NAND logical operation to all inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

381

 LogicNAND2

Description: 2-Input Logical NAND Function
Library: Numeric, Logic
Class: SDFLogicNAND2

 Pin Inputs

Pin Name Description Signal Type

1 input1 int

2 input2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

LogicNAND2 applies the NAND logical operation to both inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

382

 LogicNOR

Description: Multiple input logical NOR function
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

LogicNOR applies the NOR logical operation to all inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

383

 LogicNOR2

Description: 2-Input Logical NOR Function
Library: Numeric, Logic
Class: SDFLogicNOR2

 Pin Inputs

Pin Name Description Signal Type

1 input1 int

2 input2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

LogicNOR2 applies the NOR logical operation to both inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

384

 LogicOR

Description: Multiple input logical OR function
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

LogicOR applies the OR logical operation to all inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

385

 LogicOR2

Description: 2-Input Logical OR Function
Library: Numeric, Logic
Class: SDFLogicOR2

 Pin Inputs

Pin Name Description Signal Type

1 input1 int

2 input2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

LogicOR2 applies the OR logical operation to both inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

386

 LogicXNOR

Description: Multiple input logical XNOR function
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

LogicXNOR applies the XNOR logical operation to all inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

387

 LogicXNOR2

Description: 2-Input Logical XNOR Function
Library: Numeric, Logic
Class: SDFLogicXNOR2

 Pin Inputs

Pin Name Description Signal Type

1 input1 int

2 input2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

LogicXNOR2 applies the XNOR logical operation to both inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

388

 LogicXOR

Description: Multiple input logical XOR function
Library: Numeric, Logic
Class: SDFLogic
C++ Code: See doc/sp_items/SDFLogic.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input Input logic values. multiple int

 Pin Outputs

Pin Name Description Signal
Type

2 output Result of the logic test, with FALSE equal to zero and TRUE equal to a\nnon-zero
integer (not necessarily 1).

int

 Notes/Equations

LogicXOR applies the XOR logical operation to all inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

389

 LogicXOR2

Description: 2-Input Logical XOR Function
Library: Numeric, Logic
Class: SDFLogicXOR2

 Pin Inputs

Pin Name Description Signal Type

1 input1 int

2 input2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

LogicXOR2 applies the XOR logical operation to both inputs.1.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

390

 Multiple

Description: Multiple Test
Library: Numeric, Logic
Class: SDFMultiple
C++ Code: See doc/sp_items/SDFMultiple.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 signal Is this a multiple of the other input? int

2 test Reference input (must be positive) int

 Pin Outputs

Pin Name Description Signal Type

3 mult Equals 1 if signal is a multiple of test int

 Notes/Equations

Multiple outputs a logic high if the signal is an integer multiple of test; otherwise1.
output is a logic low.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

391

 Test

Description: Comparison test
Library: Numeric, Logic
Class: SDFTest
C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

 Parameters

Name Description Default Type Range

Condition test condition: EQ, NE, GT, GE, LT, LE EQ enum

Tolerance finite-precision parameter for EQ and NE conditions only 0.0 real (-∞, ∞)

CrossingsOnly if True, output is True only when the test result toggles: False, True False enum

 Pin Inputs

Pin Name Description Signal Type

1 Signal Signal to compare against the test (left hand
side)

real

2 Test Comparison test real

 Pin Outputs

Pin Name Description Signal Type

3 output Result of the test int

 Notes/Equations

For EQ condition, Test outputs 1 if the following expression is satisfied (otherwise1.
output is 0):
test − signal|≥ Tolerance
For NE condition, Test outputs 1 if the following expression is satisfied (otherwise
output is 0):
test − signal|< Tolerance
For GT, GE, LT, or LE condition, Test outputs 1 if the following expression is satisfied
(otherwise output is 0):
(test) condition (signal)
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

392

 TestEQ

Description: Comparision test (equal to)
Library: Numeric, Logic
Class: SDFTest
C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Tolerance finite-precision parameter for EQ and NE conditions only 0.0 real (-∞,
∞)

CrossingsOnly if True, output is True only when the test result toggles: False,
True

False enum

 Pin Inputs

Pin Name Description Signal Type

1 Signal Signal to compare against the test (left hand side) real

2 Test Comparison test real

 Pin Outputs

Pin Name Description Signal Type

3 output Result of the test int

 Notes/Equations

TestEQ outputs 1 if the following expression is satisfied (otherwise output is 0):1.
|test − signal| ≤ Tolerance
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

393

 TestGE

Description: Comparision test (greater than or equal to)
Library: Numeric, Logic
Class: SDFTest
C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

CrossingsOnly if True, output is True only when the test result toggles: False,
True

False enum

 Pin Inputs

Pin Name Description Signal Type

1 Signal Signal to compare against the test (left hand side) real

2 Test Comparison test real

 Pin Outputs

Pin Name Description Signal Type

3 output Result of the test int

 Notes/Equations

TestGE outputs 1 if the following expression is satisfied (otherwise output is 0):1.
(signal) GE (test)
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

394

 TestGT

Description: Comparision test (greater than)
Library: Numeric, Logic
Class: SDFTest
C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

CrossingsOnly if True, output is True only when the test result toggles: False,
True

False enum

 Pin Inputs

Pin Name Description Signal Type

1 Signal Signal to compare against the test (left hand side) real

2 Test Comparison test real

 Pin Outputs

Pin Name Description Signal Type

3 output Result of the test int

 Notes/Equations

TestGT outputs 1 if the expression1.
(signal) GT (test)
is satisfied; otherwise output is 0.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

395

 TestLE

Description: Comparision test (less than or equal to)
Library: Numeric, Logic
Class: SDFTest
C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

CrossingsOnly if True, output is True only when the test result toggles: False,
True

False enum

 Pin Inputs

Pin Name Description Signal Type

1 Signal Signal to compare against the test (left hand side) real

2 Test Comparison test real

 Pin Outputs

Pin Name Description Signal Type

3 output Result of the test int

 Notes/Equations

TestLE outputs 1 if the expression1.
(signal) LE (test)
is satisfied; otherwise output is 0.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

396

 TestLT

Description: Comparision test (less than)
Library: Numeric, Logic
Class: SDFTest
C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

CrossingsOnly if True, output is True only when the test result toggles: False,
True

False enum

 Pin Inputs

Pin Name Description Signal Type

1 Signal Signal to compare against the test (left hand side) real

2 Test Comparison test real

 Pin Outputs

Pin Name Description Signal Type

3 output Result of the test int

 Notes/Equations

TestLT outputs 1 if the expression1.
(signal) LT (test)
is satisfied; otherwise output is 0.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

397

 TestNE

Description: Comparision test (not equal to)
Library: Numeric, Logic
Class: SDFTest
C++ Code: See doc/sp_items/SDFTest.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Tolerance finite-precision parameter for EQ and NE conditions only 0.0 real (-∞,
∞)

CrossingsOnly if True, output is True only when the test result toggles: False,
True

False enum

 Pin Inputs

Pin Name Description Signal Type

1 Signal Signal to compare against the test (left hand side) real

2 Test Comparison test real

 Pin Outputs

Pin Name Description Signal Type

3 output Result of the test int

 Notes/Equations

TestNE outputs 1 if the expression test − signal|> Tolerance is satisfied; otherwise,1.
output is 0.
For general information regarding numeric logic component signals, refer to Numeric2.
Logic Components (numeric).

Advanced Design System 2011.01 - Numeric Components

398

 Numeric Math Components
Abs (numeric)
Add (numeric)
Add2 (numeric)
AddCx (numeric)
AddCx2 (numeric)
AddFix (numeric)
AddFix2 (numeric)
AddInt (numeric)
AddInt2 (numeric)
Average (numeric)
AverageCx (numeric)
AverageCxWOffset (numeric)
Cos (numeric)
DB (numeric)
DivByInt (numeric)
Exp (numeric)
Floor (numeric)
Gain (numeric)
GainCx (numeric)
GainFix (numeric)
GainInt (numeric)
Integrate (numeric)
Ln (numeric)
Math (numeric)
MathCx (numeric)
MaxMin (numeric)
Modulo (numeric)
ModuloInt (numeric)
Mpy (numeric)
Mpy2 (numeric)
MpyCx (numeric)
MpyCx2 (numeric)
MpyFix (numeric)
MpyFix2 (numeric)
MpyInt (numeric)
MpyInt2 (numeric)
Reciprocal (numeric)
SDC1 (numeric)
SDC2 (numeric)
SDC3 (numeric)
SDC4 (numeric)
SDCCx1 (numeric)
SDCCx2 (numeric)
SDCCx3 (numeric)
SDCCx4 (numeric)
Sgn (numeric)
Sin (numeric)
Sinc (numeric)
Sqrt (numeric)

Advanced Design System 2011.01 - Numeric Components

399

Sub (numeric)
SubCx (numeric)
SubFix (numeric)
SubInt (numeric)
Trig (numeric)
TrigCx (numeric)
Variance (numeric)

The Numeric Math components library contains integer, double precision floating-point
(real), fixed-point (fixed), and complex mathematical scalar operators. Each component
accepts a specific class of signal and outputs a resultant signal. (These components do not
accept any matrix class of signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30, and a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more
parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components refer to Parameters for
Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point
(used as sign bit).

Advanced Design System 2011.01 - Numeric Components

400

 Abs

Description: Absolute Value
Library: Numeric, Math
Class: SDFAbs
C++ Code: See doc/sp_items/SDFAbs.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Abs outputs the absolute value of the input as a floating-point (real) value.1.

where:
y(n) is the output for sample n
x(n) is the input for sample n
For general information regarding numeric math component signals, refer to Numeric2.
Math Components (numeric).

Advanced Design System 2011.01 - Numeric Components

401

 Add

Description: Multiple Input Adder
Library: Numeric, Math
Class: SDFAdd
C++ Code: See doc/sp_items/SDFAdd.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input multiple real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Add outputs the sum of inputs as a floating-point (real) value.1.
Two source outputs connected to the Add input as shown in the add schematic2.
below:

The Add output is shown in the add plot below:.3.

Advanced Design System 2011.01 - Numeric Components

402

For general information regarding numeric math component signals, refer to Numeric4.
Math Components (numeric).

Advanced Design System 2011.01 - Numeric Components

403

 Add2

Description: 2-Input Adder
Library: Numeric, Math
Class: SDFAdd2

 Pin Inputs

Pin Name Description Signal Type

1 input1 real

2 input2 real

 Pin Outputs

Pin Name Description Signal Type

3 output real

 Notes

Add2 outputs the sum of the two inputs as a floating-point (real) value.1.
For general information regarding numeric math component signals, refer to Numeric2.
Math Components (numeric).

Advanced Design System 2011.01 - Numeric Components

404

 AddCx

Description: Complex Multiple Input Adder
Library: Numeric, Math
Class: SDFAddCx
C++ Code: See doc/sp_items/SDFAddCx.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input multiple complex

 Pin Outputs

Pin Name Description Signal Type

2 output complex

 Notes/Equations

AddCx outputs the sum of inputs as a complex value.1.
For general information regarding numeric math component signals, refer to Numeric2.
Math Components (numeric).

Advanced Design System 2011.01 - Numeric Components

405

 AddCx2

Description: 2-Input Complex Adder
Library: Numeric, Math
Class: SDFAddCx2

 Pin Inputs

Pin Name Description Signal Type

1 input1 complex

2 input2 complex

 Pin Outputs

Pin Name Description Signal Type

3 output complex

 Notes

AddCx2 outputs the sum of the two inputs as a complex value.1.
For general information regarding numeric math component signals, refer to Numeric2.
Math Components (numeric).

Advanced Design System 2011.01 - Numeric Components

406

 AddFix

Description: Fixed-Point Multiple Input Adder
Library: Numeric, Math
Class: SDFAddFix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFAddFix.html under your installation directory.

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input multiple fix

 Pin Outputs

Pin Name Description Signal Type

2 output fix

 Notes/Equations

AddFix outputs the sum of inputs as a fixed-point value.1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

Advanced Design System 2011.01 - Numeric Components

407

For general information regarding numeric math component signals, refer to Numeric4.
Math Components (numeric).

Advanced Design System 2011.01 - Numeric Components

408

 AddFix2

Description: 2-Input Fixed-Point Adder
Library: Numeric, Math
Class: SDFAddFix2

 Parameters

Name Description Default Unit Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero saturate, warning

wrapped enum

ReportOverflow simulation overflow error report: DONT REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input(used only if UseArrivingPrecision is
set to NO)

2.14 precision

OutputPrecision precision of output accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input1 fix

2 input2 fix

 Pin Outputs

Pin Name Description Signal Type

3 output fix

 Notes/Equations

AddFix2 outputs the sum of the two inputs as a fixed-point value with precision1.
specified by OutputPrecision.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,

Advanced Design System 2011.01 - Numeric Components

409

when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

Advanced Design System 2011.01 - Numeric Components

410

 AddInt

Description: Integer Multiple Input Adder
Library: Numeric, Math
Class: SDFAddInt
C++ Code: See doc/sp_items/SDFAddInt.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input multiple int

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

AddInt outputs the sum of inputs as an integer value.1.

Advanced Design System 2011.01 - Numeric Components

411

 AddInt2

Description: 2-Input Integer Adder
Library: Numeric, Math
Class: SDFAddInt2

 Pin Inputs

Pin Name Description Signal Type

1 input1 int

2 input2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes

AddInt2 outputs the sum of the two inputs as an integer value.1.

Advanced Design System 2011.01 - Numeric Components

412

 Average

Description: Averager
Library: Numeric, Math
Class: SDFAverage
C++ Code: See doc/sp_items/SDFAverage.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

NumInputsToAverage number of input data items to average 8 int [1, ∞)

BlockSize input blocks of this size will be averaged to produce an
output block

1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Average calculates the output floating-point (real) average for a specified number of1.
input samples or blocks of input samples. Blocks of successive input samples are
treated as vectors and produce a block of output values.

Advanced Design System 2011.01 - Numeric Components

413

 AverageCx

Description: Complex averager
Library: Numeric, Math
Class: SDFAverageCx
C++ Code: See doc/sp_items/SDFAverageCx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

NumInputsToAverage number of input data items to average 8 int [1, ∞)

BlockSize input blocks of this size will be averaged to produce an
output block

1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input complex

 Pin Outputs

Pin Name Description Signal Type

2 output complex

 Notes/Equations

AverageCx calculates the output complex average for a specified number of input1.
samples or blocks of complex input samples. Blocks of successive input samples are
treated as vectors and produce a block of output values.

Advanced Design System 2011.01 - Numeric Components

414

 AverageCxWOffset

Description: Average Complex data with detected delay information
Library: Numeric, Math
Class: SDFAverageCxWOffset

 Parameters

Name Description Default Unit Type Range

NumSymToAverage Number of symbols to average 256 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 Input Input complex

2 Offset Offset int

 Pin Outputs

Pin Name Description Signal Type

3 Output Output complex

 Notes/Equations

This component averages the RF received data using detected RF channel delay1.
information.
This is a single-rate component. Each firing, one input token is consumed for both2.
Input pin 1 and Offset pin 2, and one output token is produced.
Averaging is performed on pin 1 input data using pin 2 detected delay information.3.
The output is the averaged complex signal envelope.
For example, a DelayEstimator component can be used with AverageCxWOffset and
the detected delay sent from DelayEstimator; at the AverageCxWOffset output, the
average value is held constant for each NumSymToAverage sample.

 References

M. Jeruchim, P. Balaban and K. Shanmugan, "Simulation of Communication System,"1.
Plenum Press, New York and London, 1992.

Advanced Design System 2011.01 - Numeric Components

415

 Cos

Description: Cosine Function
Library: Numeric, Math
Class: SDFCos
C++ Code: See doc/sp_items/SDFCos.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Cos calculates the cosine of its input, which is assumed to be an angle in radians.1.

where:
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

416

 DB

Description: dB value
Library: Numeric, Math
Class: SDFDB
C++ Code: See doc/sp_items/SDFDB.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Min minimum output value -100 real (-∞,
∞)

Type type of input signal measurement: Power as 10*log(input),
Amplitude as 20*log(input)

Amplitude as
20*log(input)

 enum

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

DB converts the input value to floating-point (real) dB scale. Zero and negative1.
values are assigned the Min value.
If the input signal is a power measurement set Type to Power; if the input signal is2.
an amplitude measurement set Type to Amplitude.
If Type = Power as 10log(input):

If Type = Power as 20log(input):

where:
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

417

 DivByInt

Description: Integer division
Library: Numeric, Math
Class: SDFDivByInt
C++ Code: See doc/sp_items/SDFDivByInt.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Divisor integer divisor 2 int (-∞, 0) or (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input int

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

DivByInt calculates the integer output equal to the integer input divided by the1.
integer Divisor. Truncated integer division is used.

Advanced Design System 2011.01 - Numeric Components

418

 Exp

Description: Exponential Function
Library: Numeric, Math
Class: SDFExp
C++ Code: See doc/sp_items/SDFExp.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Exp calculates the floating-point (real) exponential function (base e) of the input.1.

where:
y(n) is the output for sample n
x(n) is the input for sample n
The input value must be ≤ ln (maximum double-precision floating-point (real) value)2.
to avoid overflow.

Advanced Design System 2011.01 - Numeric Components

419

 Floor

Description: Floor Function
Library: Numeric, Math
Class: SDFFloor
C++ Code: See doc/sp_items/SDFFloor.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

Floor outputs the integer floor of the input.1.

where:
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

420

 Gain

Description: gain value
Library: Numeric, Math
Class: SDFGain
C++ Code: See doc/sp_items/SDFGain.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Gain gain value 1.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Gain calculates the floating-point (real) output equal to the input multiplied by Gain.1.

Advanced Design System 2011.01 - Numeric Components

421

 GainCx

Description: Complex gain
Library: Numeric, Math
Class: SDFGainCx
C++ Code: See doc/sp_items/SDFGainCx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Gain gain value 1 complex

 Pin Inputs

Pin Name Description Signal Type

1 input complex

 Pin Outputs

Pin Name Description Signal Type

2 output complex

 Notes/Equations

GainCx calculates the complex output equal to the input multiplied by the complex1.
Gain.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

Advanced Design System 2011.01 - Numeric Components

422

 GainFix

Description: Fixed-Point Gain
Library: Numeric, Math
Class: SDFGainFix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFGainFix.html under your installation directory.

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

Gain gain value 1.0 fix

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input fix

 Pin Outputs

Pin Name Description Signal Type

2 output fix

 Notes/Equations

GainFix calculates the fixed-point output equal to the input multiplied by Gain.1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a

Advanced Design System 2011.01 - Numeric Components

423

precision of 1.0 and the output value will be forced to 0.

Advanced Design System 2011.01 - Numeric Components

424

 GainInt

Description: Integer gain
Library: Numeric, Math
Class: SDFGainInt
C++ Code: See doc/sp_items/SDFGainInt.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Gain gain value 1 int (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input int

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

GainInt calculates the integer output equal to the input multiplied by the integer1.
Gain.

Advanced Design System 2011.01 - Numeric Components

425

 Integrate

Description: Integrator
Library: Numeric, Math
Class: SDFIntegrate
C++ Code: See doc/sp_items/SDFIntegrate.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

FeedbackGain gain on feedback path 1.0 real (-∞, ∞)

Top upper limit 0.0 real (-∞, ∞)

Bottom lower limit 0.0 real (-∞, ∞)

Saturate perform saturation: NO, YES YES enum

State an internal state 0.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 data real

2 reset int

 Pin Outputs

Pin Name Description Signal Type

3 output real

 Notes/Equations

Integrate calculates the output floating-point (real) summation for a specified1.
number of input samples or blocks of input samples. Blocks of successive input
samples are treated as vectors and produce a block of output values.
Integrate is an integrator with leakage, limits, and reset. With the default2.
parameters, input samples are simply accumulated, and the running sum is the
output. To prevent any resetting in the middle of a run, connect a Const source with
value 0 to the reset input. Otherwise, whenever a non-zero is received on this input,
the accumulated sum is reset to the current input (that is, no feedback).
Limits are controlled by Top and Bottom. If Top ≤ Bottom, no limiting is performed;3.
otherwise, the output is kept between Top and Bottom.
If Saturate = YES, saturation is performed. If Saturate = NO, wraparound is
performed. Limiting is performed before output.
Leakage is controlled by the FeedbackGain state. The output is the data input plus4.
FeedbackGain × State, where State is the previous output.

Advanced Design System 2011.01 - Numeric Components

426

Advanced Design System 2011.01 - Numeric Components

427

 Ln

Description: Natural Log
Library: Numeric, Math
Class: SDFLn
C++ Code: See doc/sp_items/SDFLn.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Ln outputs the floating-point (real) natural logarithm of the input.1.

where:
y(n) is the output for sample n
x(n) is the input for sample n
The input must be > 0.2.

Advanced Design System 2011.01 - Numeric Components

428

 Math

Description: Math Function
Library: Numeric, Math
Class: SDFMath

 Parameters

Name Description Default Unit Type Range

Type mathematical function: Abs, Ceil, Exp, Floor, Ln, Log10, Pow10, Recip,
Round, Sqr, Sqrt

Abs enum

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

Math performs the floating-point (real) mathematical functions:1.
y(n) = f(x(n))
where:
y(n) is the output for sample n
x(n) is the input for sample n
and where f() is any function that can be selected from the Type parameter.
If Type = Abs, then y(n) = | x(n) |2.

If Type = Ceil, then y(n) = , where
If Type = Exp, then y(n) = e x(n)

If Type = Floor, then y(n) = , where
If Type = Ln, then y(n) = ln(x(n))
If Type = Log10, then y(n) = log 10 (x(n))

If Type = Pow10, then y(n) = 10 x(n)

If Type = Recip, then y(n) = 1 / x(n)
If Type = Round, then y(n) = closest integer to x(n) (numbers at the same distance
from two integers map away from 0; for example, 2.5 maps to 3 and −2.5 maps to
−3)
If Type = Sqr, then y(n) = x(n) 2

If Type = Sqrt, then y(n) =

Advanced Design System 2011.01 - Numeric Components

429

Advanced Design System 2011.01 - Numeric Components

430

 MathCx

Description: Complex Math Function
Library: Numeric, Math
Class: SDFMathCx
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

Type mathematical function: Abs, Ceil, Exp, Floor, Ln, Log10, Pow10, Recip,
Round, Sqr, Sqrt, Conj

Abs enum

 Pin Inputs

Pin Name Description Signal Type

1 input input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 output output signal complex

 Notes/Equations

MathCx performs the complex mathematical functions:1.
y(n) = f(x(n))
where:
y(n) is the output for sample n
x(n) is the input for sample n
and where f() is any function that can be selected from the Type parameter.

If Type = Abs, then y(n) = | x(n) | = 2.

If Type = Ceil, then y(n) = (see Ceil function of
Math component)
If Type = Exp, then y(n) = e x(n) = e Re{x(n)} (cos(Im{x(n)}) + j sin(Im{x(n)}))

If Type = Floor, then y(n) = (see Floor function of
Math component)

If Type = Ln, then y(n) = , where is the
phase of x(n) in radians.
If Type = Log10, then y(n) = log 10 (x(n)) = ln(x(n)) / ln(10).

If Type = Pow10, then y(n) = 10 x(n) = e x(n) ln(10)

If Type = Recip, then y(n) = 1 / x(n) = (Re{x (n)} − j Im {x(n)}) / | x(n) | 2

Advanced Design System 2011.01 - Numeric Components

431

If Type = Round, then y(n) = Round(Re{x(n)}) + j Round (Im{x(n)}) (see Round
function of Math component)
If Type = Sqr, then y(n) = x(n) 2

If Type = Sqrt, then y(n) = , where is the
phase of x(n) in radians.

If Type = Conj, then y(n) =

Advanced Design System 2011.01 - Numeric Components

432

 MaxMin

Description: Maximum or minimum value
Library: Numeric, Math
Class: SDFMaxMin
C++ Code: See doc/sp_items/SDFMaxMin.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

N default samples 10 int [0, ∞)

MaxOrMin output value: min, max max enum

Compare compare input value or magnitude: valueIn, magnitudeIn valueIn enum

OutputType output value or magnitude: valueOut, magnitudeOut valueOut enum

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

3 index int

 Notes/Equations

MaxMin finds the minimum or minimum value or magnitude of a fixed number of data1.
values on the input.
Use MaxMin to operate over multiple data streams by preceding it with a Commutator
and set the N state accordingly.
If Compare = valueIn, the input with the maximum or minimum value is located; if2.
Compare = magnitudeIn, the input with the maximum or minimum magnitude is
located.
If OutputType = magnitudeOut, the magnitude of the result is written to the output;3.
if OutputType = valueOut, the result itself is written to the output. Returns maximum
value among N input samples. The index of the output is also provided (count starts
at 0).

Advanced Design System 2011.01 - Numeric Components

433

 Modulo

Description: Floating-point modulo
Library: Numeric, Math
Class: SDFModulo
C++ Code: See doc/sp_items/SDFModulo.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Modulo modulo value 1.0 real (-∞, 0) or (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

Modulo outputs the floating-point (real) remainder with the same sign as input after1.
dividing the input by the Modulo parameter.

where:
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

434

 ModuloInt

Description: Integer modulo
Library: Numeric, Math
Class: SDFModuloInt
C++ Code: See doc/sp_items/SDFModuloInt.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Modulo modulo value 10 int (-∞, 0) or (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal int

 Pin Outputs

Pin Name Description Signal Type

2 output output signal int

 Notes/Equations

ModuloInt outputs the integer remainder with the same sign as input after dividing1.
the input by the integer Modulo parameter.

where:
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

435

 Mpy

Description: Multiple Input Multiplier
Library: Numeric, Math
Class: SDFMpy
C++ Code: See doc/sp_items/SDFMpy.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input multiple real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Mpy outputs the product of inputs as a floating-point (real) value.1.

Advanced Design System 2011.01 - Numeric Components

436

 Mpy2

Description: 2-Input Multiplier
Library: Numeric, Math
Class: SDFMpy
C++ Code: See doc/sp_items/SDFMpy.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input#1 real

2 input#2 real

 Pin Outputs

Pin Name Description Signal Type

3 output real

 Notes/Equations

Mpy2 outputs the product of the two inputs as a floating-point (real) value.1.

Advanced Design System 2011.01 - Numeric Components

437

 MpyCx

Description: Complex Multiple Input Multiplier
Library: Numeric, Math
Class: SDFMpyCx
C++ Code: See doc/sp_items/SDFMpyCx.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input multiple complex

 Pin Outputs

Pin Name Description Signal Type

2 output complex

 Notes/Equations

MpyCx outputs the product of the complex inputs as a complex value.1.

Advanced Design System 2011.01 - Numeric Components

438

 MpyCx2

Description: 2-Input Complex Multiplier
Library: Numeric, Math
Class: SDFMpyCx
C++ Code: See doc/sp_items/SDFMpyCx.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input#1 complex

2 input#2 complex

 Pin Outputs

Pin Name Description Signal Type

3 output complex

 Notes/Equations

MpyCx2 outputs the product of two inputs as a complex value.1.

Advanced Design System 2011.01 - Numeric Components

439

 MpyFix

Description: Fixed-Point Multiple Input Multiplier
Library: Numeric, Math
Class: SDFMpyFix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFMpyFix.html under your installation directory.

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input multiple fix

 Pin Outputs

Pin Name Description Signal Type

2 output fix

 Notes/Equations

MpyFix outputs the product of the inputs as a fixed-point value.1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

Advanced Design System 2011.01 - Numeric Components

440

Advanced Design System 2011.01 - Numeric Components

441

 MpyFix2

Description: 2-Input Fixed-Point Multiplier
Library: Numeric, Math
Class: SDFMpyFix
C++ Code: See doc/sp_items/SDFMpyFix.html under your installation directory.

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input#1 fix

2 input#2 fix

 Pin Outputs

Pin Name Description Signal Type

3 output fix

 Notes/Equations

MpyFix2 outputs the product of the two inputs as a fixed-point value.1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a

Advanced Design System 2011.01 - Numeric Components

442

precision of 1.0 and the output value will be forced to 0.

Advanced Design System 2011.01 - Numeric Components

443

 MpyInt

Description: Integer Multiple Input Multiplier
Library: Numeric, Math
Class: SDFMpyInt
C++ Code: See doc/sp_items/SDFMpyInt.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input multiple int

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

MpyInt outputs the product of the inputs as an integer value.1.

Advanced Design System 2011.01 - Numeric Components

444

 MpyInt2

Description: 2-Input Integer Multiplier
Library: Numeric, Math
Class: SDFMpyInt
C++ Code: See doc/sp_items/SDFMpyInt.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input#1 int

2 input#2 int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

MpyInt2 outputs the product of two inputs as an integer value.1.

Advanced Design System 2011.01 - Numeric Components

445

 Reciprocal

Description: Reciprocal function
Library: Numeric, Math
Class: SDFReciprocal
C++ Code: See doc/sp_items/SDFReciprocal.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

MagLimit magnitude limit; non-zero limits the output magnitude 0.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Reciprocal calculates the reciprocal of the input, with an optional magnitude limit.1.
If MagLimit = 0

If MagLimit ≠ 0 and input = 0
y(n) = MagLimit
If MagLimit ≠ 0 and input ≠ 0

where:
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

446

 SDC1

Description: 1-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0 real

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

 Pin Outputs

Pin Name Description Signal Type

2 output Numeric output signal real

 Notes/Equations

This component generates numeric data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

447

 SDC2

Description: 2-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0 real

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

 Pin Outputs

Pin Name Description Signal Type

3 output Numeric output signal real

 Notes/Equations

This component generates numeric data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

448

 SDC3

Description: 3-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0 real

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

 Pin Outputs

Pin Name Description Signal Type

4 output Numeric output signal real

 Notes/Equations

This component generates numeric data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

449

 SDC4

Description: 4-Input Symbolic Defined Component
Library: Numeric, Math
Class: SDFSDC

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0 real

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

 Pin Outputs

Pin Name Description Signal Type

5 output Numeric output signal real

 Notes/Equations

This component generates numeric data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

450

 SDCCx1

Description: 1-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0+j*0.0 complex

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

 Pin Outputs

Pin Name Description Signal Type

2 output Numeric output signal complex

 Notes/Equations

This component generates complex data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

451

 SDCCx2

Description: 2-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0+j*0.0 complex

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

 Pin Outputs

Pin Name Description Signal Type

3 output Numeric output signal complex

 Notes/Equations

This component generates complex data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

452

 SDCCx3

Description: 3-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0+j*0.0 complex

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

 Pin Outputs

Pin Name Description Signal Type

4 output Numeric output signal complex

 Notes/Equations

This component generates complex data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

453

 SDCCx4

Description: 4-Input Symbolic Defined Component with Complex Output
Library: Numeric, Math
Class: SDFSDCCx

 Parameters

Name Description Default Type

Expression Expression, function of
inputs

0.0+j*0.0 complex

 Pin Inputs

Pin Name Description Signal Type

1 input#1 anytype

2 input#2 anytype

3 input#3 anytype

4 input#4 anytype

 Pin Outputs

Pin Name Description Signal Type

5 output Numeric output signal complex

 Notes/Equations

This component generates complex data output that is evaluated using an expression1.
based on input data. Expression can be any valid expression, following the syntax
used for writing expressions on a VAR block.
Input data is specified by predefined variables _v1, _v2, etc. where 1 and 2 is the2.
port number. The Expression can also be dependent on predefined variable, Nsample,
which is incremented for each firing of this component determined by the schedule.

Advanced Design System 2011.01 - Numeric Components

454

 Sgn

Description: Signum Function
Library: Numeric, Math
Class: SDFSgn
C++ Code: See doc/sp_items/SDFSgn.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

Sgn calculates the signum of the input.1.
y(n) = sign of x(n)
where
y(n) is the output for sample n
x(n) is the input for sample n
The output is 1 if x ≥ 0. The output is −1 if x < 0.2.

Advanced Design System 2011.01 - Numeric Components

455

 Sin

Description: Sine Function
Library: Numeric, Math
Class: SDFSin
C++ Code: See doc/sp_items/SDFSin.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Sin calculates the sine of its input, which is assumed to be an angle in radians.1.
y(n)) = sin (x(n))
where
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

456

 Sinc

Description: Sinc Function
Library: Numeric, Math
Class: SDFSinc
C++ Code: See doc/sp_items/SDFSinc.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input The input x to the sinc function. real

 Pin Outputs

Pin Name Description Signal Type

2 output The output of the sinc function. real

 Notes/Equations

Sinc calculates the floating-point (real) sinc of its input given in radians. The sinc1.
function is defined as sin(x)/x, with value 1.0 when x = 0.

Advanced Design System 2011.01 - Numeric Components

457

 Sqrt

Description: Square Root Function
Library: Numeric, Math
Class: SDFSqrt
C++ Code: See doc/sp_items/SDFSqrt.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Sqrt calculates the floating-point (real) square root of the input.1.

where
y(n) is the output for sample n
x(n) is the input for sample n
The input value must be ≥ 0.2.

Advanced Design System 2011.01 - Numeric Components

458

 Sub

Description: Multiple Input Subtractor
Library: Numeric, Math
Class: SDFSub
C++ Code: See doc/sp_items/SDFSub.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 pos real

2 neg multiple real

 Pin Outputs

Pin Name Description Signal Type

3 output real

 Notes/Equations

Sub outputs input1 minus all input2 values as a floating-point (real) value.1.

Advanced Design System 2011.01 - Numeric Components

459

 SubCx

Description: Complex Multiple Input Subtractor
Library: Numeric, Math
Class: SDFSubCx
C++ Code: See doc/sp_items/SDFSubCx.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 pos complex

2 neg multiple complex

 Pin Outputs

Pin Name Description Signal Type

3 output complex

 Notes/Equations

SubCx outputs input1 minus all input2 values as a complex value.1.

Advanced Design System 2011.01 - Numeric Components

460

 SubFix

Description: Fixed-Point Multiple Input Subtractor
Library: Numeric, Math
Class: SDFSubFix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFSubFix.html under your installation directory.

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input (used only if UseArrivingPrecision is set to NO) 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 pos fix

2 neg multiple fix

 Pin Outputs

Pin Name Description Signal Type

3 output fix

 Notes/Equations

SubFix outputs input1 minus all input2 values as a fixed-point value.1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,

Advanced Design System 2011.01 - Numeric Components

461

when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.

Advanced Design System 2011.01 - Numeric Components

462

 SubInt

Description: Integer Multiple Input Subtractor
Library: Numeric, Math
Class: SDFSubInt
C++ Code: See doc/sp_items/SDFSubInt.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 pos int

2 neg multiple int

 Pin Outputs

Pin Name Description Signal Type

3 output int

 Notes/Equations

SubInt outputs input1 minus all input2 values as an integer value.1.

Advanced Design System 2011.01 - Numeric Components

463

 Trig

Description: Trigonometric function
Library: Numeric, Math
Class: SDFTrig
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

Type function: Sin, Cos, Tan, Cot, Asin, Acos, Atan, Acot, Sinh, Cosh, Tanh,
Coth, Asinh, Acosh, Atanh, Acoth

Sin enum

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

Trig performs the floating-point (real) trigonometric functions:1.
v 2 (t) = f(v 1 (t))

where f() is any of the functions that can be selected from the Type parameter.
All angles are in radians.2.

Advanced Design System 2011.01 - Numeric Components

464

 TrigCx

Description: Complex trigonometric function
Library: Numeric, Math
Class: SDFTrigCx
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

Type function: Sin, Cos, Tan, Cot, Asin, Acos, Atan, Acot, Sinh, Cosh, Tanh,
Coth, Asinh, Acosh, Atanh, Acoth

Sin enum

 Pin Inputs

Pin Name Description Signal Type

1 input input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 output output signal complex

 Notes/Equations

This component performs the complex trigonometric functions:1.
v 2 (t) = f(v 1 (t))

where f() is any of the functions that can be selected from the Type parameter.
All angles are in radians.2.

Advanced Design System 2011.01 - Numeric Components

465

 Variance

Description: Variance function
Library: Numeric, Math
Class: SDFVariance

 Parameters

Name Description Default Unit Type Range

BlockSize number of inputs to process between each mean and variance
estimate

1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 in real

 Pin Outputs

Pin Name Description Signal Type

2 mean real

3 variance real

 Notes/Equations

Variance calculates a running floating-point (real) estimate of the mean and variance1.
of the inputs.

Advanced Design System 2011.01 - Numeric Components

466

 Numeric Matrix Components
Abs M (numeric)
Add2 M (numeric)
AddCx2 M (numeric)
AddCx M (numeric)
AddFix2 M (numeric)
AddFix M (numeric)
AddInt2 M (numeric)
AddInt M (numeric)
Add M (numeric)
AvgSqrErr M (numeric)
Conjugate M (numeric)
Delay M (numeric)
GainCx M (numeric)
GainFix M (numeric)
GainInt M (numeric)
Gain M (numeric)
Hermitian M (numeric)
InverseCx M (numeric)
InverseFix M (numeric)
InverseInt M (numeric)
Inverse M (numeric)
Kalman M (numeric)
MpyCx M (numeric)
MpyFix M (numeric)
MpyInt M (numeric)
Mpy M (numeric)
MpyScalarCx M (numeric)
MpyScalarFix M (numeric)
MpyScalarInt M (numeric)
MpyScalar M (numeric)
MxCom M (numeric)
MxDecom M (numeric)
PackCx M (numeric)
PackFix M (numeric)
PackInt M (numeric)
Pack M (numeric)
SampleMean M (numeric)
SubCx M (numeric)
SubFix M (numeric)
SubInt M (numeric)
Sub M (numeric)
SubMxCx M (numeric)
SubMxFix M (numeric)
SubMxInt M (numeric)
SubMx M (numeric)
SVD M (numeric)
TableCx M (numeric)
TableInt M (numeric)
Table M (numeric)

Advanced Design System 2011.01 - Numeric Components

467

ToeplitzCx M (numeric)
ToeplitzFix M (numeric)
ToeplitzInt M (numeric)
Toeplitz M (numeric)
TransposeCx M (numeric)
TransposeFix M (numeric)
TransposeInt M (numeric)
Transpose M (numeric)
UnPkCx M (numeric)
UnPkFix M (numeric)
UnPkInt M (numeric)
UnPk M (numeric)

Numeric matrix components provide basic matrix data processing functions such as matrix
addition, multiplication, inversion and more and operate on matrix data sets that are
integer, double precision floating-point (real)), fixed-point (fixed), or complex values.
Each component accepts a specific class of signal and outputs a resultant signal. (These
components do not accept any scalar class of signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from complex or floating-point (real) signals to a fixed signal uses a default bit
width of 32 bits with the minimum number of integer bits needed to represent the value.
For example, the auto conversion of the floating-point (real) value of 1.0 creates a fixed-
point value with precision of 2.30; a value of 0.5 creates one with a precision of 1.31. For
details on conversions between different classes of signals, refer to Conversion of Data
Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more
parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components refer to Parameters for
Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point
(used as sign bit).

Advanced Design System 2011.01 - Numeric Components

468

 Abs_M

Description: Absolute Value Matrix
Library: Numeric, Matrix
Class: SDFAbs_M
Derived From: MatrixBase
C++ Code: See doc/sp_items/SDFAbs_M.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

Abs_M outputs a matrix composed of the absolute value of each entry of the input1.
matrix.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

469

 Add2_M

Description: 2-Input Matrix Adder
Library: Numeric, Matrix
Class: SDFAdd_M
C++ Code: See doc/sp_items/SDFAdd_M.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input#1 real matrix

2 input#2 real matrix

 Pin Outputs

Pin Name Description Signal Type

3 output real matrix

 Notes

Add2 adds the two inputs and outputs the resulting matrix. The two input matrix1.
signals must have the same matrix row and column values, otherwise an error will be
reported.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

470

 AddCx2_M

Description: 2-Input Complex Matrix Adder
Library: Numeric, Matrix
Class: SDFAddCx_M

 Pin Inputs

Pin Name Description Signal Type

1 input#1 complex matrix

2 input#2 complex matrix

 Pin Outputs

Pin Name Description Signal Type

3 output complex matrix

 Notes

AddCx2_M adds the two inputs and outputs the resulting matrix. The two input1.
matrix signals must have the same matrix row and column values, otherwise an error
will be reported.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

471

 AddCx_M

Description: Complex Matrix Adder
Library: Numeric, Matrix
Class: SDFAddCx_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input multiple complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

AddCx_M adds all input matrices and outputs the resulting matrix.1.
All input matrices must be of the same dimensions.2.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

472

 AddFix2_M

Description: 2-Input Fixed-Point Matrix Adder
Library: Numeric, Matrix
Class: SDFAddFix_M

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input#1 fix matrix

2 input#2 fix matrix

 Pin Outputs

Pin Name Description Signal Type

3 output fix matrix

 Notes/Equations

AddFix2_ M adds the two inputs and outputs the resulting matrix with precision1.
specified by OutputPrecision. The two input matrix signals must have the same
matrix row and column values, otherwise an error will be reported.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,

Advanced Design System 2011.01 - Numeric Components

473

when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to4.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

474

 AddFix_M

Description: Fixed Matrix Adder
Library: Numeric, Matrix
Class: SDFAddFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input multiple fix
matrix

 Pin Outputs

Pin Name Description Signal Type

2 output fix matrix

 Notes/Equations

AddFix_M adds all input matrices and outputs the resulting matrix. If the result of the1.
sum for any entry in the matrix cannot be fit into the precision of the output,
overflow occurs and is handled by OverflowHandler.
All input matrices must be of the same dimensions.2.
If the fixed-point operations cannot fit into the precision specified, overflow occurs3.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

Advanced Design System 2011.01 - Numeric Components

475

If UseArrivingPrecision = YES, then components that send a NULL particle on their4.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to5.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

476

 AddInt2_M

Description: 2-Input Integer Matrix Adder
Library: Numeric, Matrix
Class: SDFAddInt_M

 Pin Inputs

Pin Name Description Signal Type

1 input#1 int matrix

2 input#2 int matrix

 Pin Outputs

Pin Name Description Signal Type

3 output int matrix

 Notes/Equations

AddInt2_M adds the two inputs and outputs the resulting matrix. The two input1.
matrix signals must have the same matrix row and column values, otherwise an error
will be reported.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

477

 AddInt_M

Description: Integer Matrix Adder
Library: Numeric, Matrix
Class: SDFAddInt_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input multiple int
matrix

 Pin Outputs

Pin Name Description Signal Type

2 output int matrix

 Notes/Equations

AddInt_M adds all input matrices and outputs the resulting matrix. All input matrices1.
must be of the same dimensions.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

478

 Add_M

Description: Matrix Adder
Library: Numeric, Matrix
Class: SDFAdd_M
Derived From: MatrixBase
C++ Code: See doc/sp_items/SDFAdd_M.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 input multiple real
matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

Add_M adds all input matrices together and outputs the resulting matrix. All input1.
matrices must be of the same dimensions.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

479

 AvgSqrErr_M

Description: Average Mean Squared Error Matrix
Library: Numeric, Matrix
Class: SDFAvgSqrErr_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumInputs number of input matrices to average 8 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input1 real matrix

2 input2 real matrix

 Pin Outputs

Pin Name Description Signal Type

3 output real

 Notes/Equations

AvgSqrErr_M computes the average mean squared error over a set of input matrix1.
pairs. The squared error between each corresponding element of a pair of input
matrices (input1 and input2) is computed and the errors from each element are
summed together. The sums are then averaged over the number of input matrix
pairs. NumInputs gives the number of consecutive input matrix pairs that are
averaged.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

480

 Conjugate_M

Description: Conjugate Matrix
Library: Numeric, Matrix
Class: SDFConjugate_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

Conjugate_M outputs the conjugate of the input matrix. Each element of the output1.
matrix is the complex conjugate of the corresponding input matrix element.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

481

 Delay_M

Description: Matrix Delay Component
Library: Numeric, Matrix
Class: HOFDelay_M
Derived From: Delay

 Parameters

Name Description Default Type Range

N N 1 int [0, ∞)

NumRows number of rows in initial matrix 2 int [1, ∞)

NumCols number of columns in initial matrix 2 int [1, ∞)

InitialMatrixContents contents of CustomMatrix 1 0 0 1 string

 Pin Inputs

Pin Name Description Signal Type

1 input multiple anytype

 Pin Outputs

Pin Name Description Signal Type

2 output multiple anytype

 Notes/Equations

Delay_M adds N initial matrices to the output signal.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).
The parameters N, NumRows, and NumCols cannot be swept.3.

Advanced Design System 2011.01 - Numeric Components

482

 GainCx_M

Description: Complex Gain Matrix
Library: Numeric, Matrix
Class: SDFGainCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type

Gain gain to be multiplied with each entry of the input
matrix

1 complex

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

GainCx_M multiplies a complex matrix by a scalar complex gain value given by the1.
Gain parameter.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

483

 GainFix_M

Description: Fixed-Point Gain Matrix
Library: Numeric, Matrix
Class: SDFGainFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

Gain gain to be multiplied with each input matrix entry 1.0 fix

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input fix matrix

 Pin Outputs

Pin Name Description Signal Type

2 output fix matrix

 Notes/Equations

GainFix_M multiplies a fixed-point matrix by a fixed-point scalar given by the Gain1.
parameter.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,

Advanced Design System 2011.01 - Numeric Components

484

when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to4.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

485

 GainInt_M

Description: Integer Gain Matrix
Library: Numeric, Matrix
Class: SDFGainInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

Gain gain to be multiplied with each input matrix entry 1 int (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input int matrix

 Pin Outputs

Pin Name Description Signal Type

2 output int matrix

 Notes/Equations

GainInt_M multiplies an integer matrix by a scalar integer given by the Gain1.
parameter.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

486

 Gain_M

Description: Gain Matrix
Library: Numeric, Matrix
Class: SDFGain_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

Gain gain to be multiplied with each entry of the input
matrix

1.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

Gain_M multiplies a floating-point (real) matrix by a scalar gain value given by the1.
Gain parameter.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

487

 Hermitian_M

Description: Hermitian Matrix
Library: Numeric, Matrix
Class: SDFHermitian_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

Hermitian_M performs a Hermitian transpose (conjugate transpose) on the input1.
matrix.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

488

 InverseCx_M

Description: Complex Inverse Matrix
Library: Numeric, Matrix
Class: SDFInverseCx_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

The complex output matrix is the inverse of the complex input matrix.1.

The input matrix must be square.2.
For information regarding numeric matrix component signals, refer to Numeric Matrix3.
Components (numeric).

Advanced Design System 2011.01 - Numeric Components

489

 InverseFix_M

Description: Fixed-Point Inverse Matrix
Library: Numeric, Matrix
Class: SDFInverseFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input fix matrix

 Pin Outputs

Pin Name Description Signal Type

2 output fix matrix

 Notes/Equations

The fixed-point output matrix is the inverse of the fixed-point input matrix.1.

The input matrix must be square.2.
If the fixed-point operations cannot fit into the precision specified, overflow occurs3.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their4.

Advanced Design System 2011.01 - Numeric Components

490

first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to5.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

491

 InverseInt_M

Description: Integer Inverse Matrix
Library: Numeric, Matrix
Class: SDFInverseInt_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input int matrix

 Pin Inputs

Pin Name Description Signal Type

2 output int matrix

 Notes/Equations

The integer output matrix is the inverse of the input matrix. (Due to integer1.
arithmetic limitations, the output may not be the exact inverse of the input.)

The input matrix must be square.2.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

492

 Inverse_M

Description: Inverse Matrix
Library: Numeric, Matrix
Class: SDFInverse_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

The output matrix is the inverse of the input matrix.1.

The input matrix must be square.2.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

493

 Kalman_M

Description: Kalman Filter Matrix
Library: Numeric, Matrix
Class: SDFKalman_M
Derived From: MatrixBase
C++ Code: See doc/sp_items/SDFKalman_M.html under your installation directory.

 Parameters

Name Description Default Type Range

StateDimension number of elements in state vector 5 int [1, ∞)

InputDimension number of elements in observation
vector

1 int [1, ∞)

InitialState initial value of state vector 0.0 [5] real
array

InitialCorrMatrix initial value of correlation matrix of
error

.1 0 [5] .1 0 [5] .1 0
[5] .1 0 [5] .1

real
array

InitialStateTransitionMatrix state transition matrix at time 0.
PHI(1,0)

1 0 [5] 1 0 [5] 1 0 [5]
1 0 [5] 1

real
array

InitialProcessNoiseCorrMatrix correlation matrix of process noise
vector at time 0. Q(0)

0.0 [25] real
array

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

2 StateTransitionMatrixAtTimeN real matrix

3 MeasurementMatrixAtTimeN real matrix

4 ProcessNoiseCorrMatrixAtTimeN real matrix

5 MeasurementNoiseCorrMatrixAtTimeN real matrix

 Pin Outputs

Pin Name Description Signal Type

6 output real matrix

 Notes/Equations

Kalman_M implements a Kalman filter using the one-step prediction algorithm. The1.
initial values for the state transition, correlation, process noise correlation matrices,
and state vector are given as parameters.
Inputs are the current values of the state transition, process noise correlation,2.
measurement noise correlation, and measurement matrices, and the observation
vector.

Advanced Design System 2011.01 - Numeric Components

494

The single output is the state vector.3.
For details on using arrays of data for parameter values, refer to Understanding4.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For general information regarding numeric matrix component signals, refer to5.
Numeric Matrix Components (numeric).

 References

R.E. Kalman, "A new approach to linear filtering and prediction problems," Trans.1.
ASME, J. Basic Eng., Ser 82D, pp. 35-45, March 1960.
S. Haykin, Adaptive Filter Theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1986.2.

Advanced Design System 2011.01 - Numeric Components

495

 MpyCx_M

Description: Complex Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpyCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in initial matrix 2 int [1, ∞)

NumCols number of columns in initial matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 Ainput complex matrix

2 Binput complex matrix

 Pin Outputs

Pin Name Description Signal Type

3 output complex matrix

 Notes/Equations

MpyCx_M multiplies the complex input matrices and outputs the resulting matrix.1.
The output matrix will have same number of rows as the Ainput and the same2.
number of columns as the Binput.

The number of columns in the Ainput matrix must match the number of rows in the3.
Binput matrix.
For general information regarding numeric matrix component signals, refer to4.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

496

 MpyFix_M

Description: Fixed-Point Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpyFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 Ainput fix matrix

2 Binput fix matrix

 Pin Outputs

Pin Name Description Signal Type

3 output fix matrix

 Notes/Equations

MpyFix_M multiplies the input matrices and outputs the resulting fixed-point matrix.1.
If the result of the multiplication for any entry in the matrix cannot be fit into the
precision of the output, overflow occurs and is handled by OverflowHandler.
The output matrix will have same number of rows as the Ainput and the same2.
number of columns as the Binput.

The number of columns in the Ainput matrix must match the number of rows in the3.
Binput matrix.
If the fixed-point operations cannot fit into the precision specified, overflow occurs4.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will

Advanced Design System 2011.01 - Numeric Components

497

be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy)in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their5.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to6.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

498

 MpyInt_M

Description: Integer Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpyInt_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 Ainput int matrix

2 Binput int matrix

 Pin Outputs

Pin Name Description Signal Type

3 output int matrix

 Notes/Equations

MpyInt_M multiplies the input matrices and outputs the resulting matrix.1.
The output matrix will have same number of rows as the Ainput and the same2.
number of columns as the Binput.

The number of columns in the Ainput matrix must match the number of rows in the3.
Binput matrix.
For general information regarding numeric matrix component signals, refer to4.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

499

 Mpy_M

Description: Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpy_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 Ainput real matrix

2 Binput real matrix

 Pin Outputs

Pin Name Description Signal Type

3 output real matrix

 Notes/Equations

Mpy_M multiplies the input matrices and outputs the resulting matrix.1.
The output matrix will have same number of rows as the Ainput and the same2.
number of columns as the Binput.

The number of columns in the Ainput matrix must match the number of rows in the3.
Binput matrix.
For general information regarding numeric matrix component signals, refer to4.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

500

 MpyScalarCx_M

Description: Matrix and Complex Scalar Multiplier
Library: Numeric, Matrix
Class: SDFMpyScalarCx_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

2 gain Input gain to be multiplied with the input matrix complex

 Pin Outputs

Pin Name Description Signal Type

3 output complex matrix

 Notes/Equations

MpyScalarCx_M multiplies a complex matrix by a scalar complex input value.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

501

 MpyScalarFix_M

Description: Scalar and Fixed-Point Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpyScalarFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 input fix matrix

2 gain Input gain to be multiplied with the input matrix fix

 Pin Outputs

Pin Name Description Signal Type

3 output fix matrix

 Notes/Equations

MpyScalarFix_M multiplies a fixed-point matrix by a scalar fixed-point input value.1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their3.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a

Advanced Design System 2011.01 - Numeric Components

502

precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to4.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

503

 MpyScalarInt_M

Description: Scalar and Integer Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpyScalarInt_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input int matrix

2 gain Input gain to be multiplied with the input matrix int

 Pin Outputs

Pin Name Description Signal Type

3 output int matrix

 Notes/Equations

MpyScalarCx_M multiplies an integer matrix by a scalar integer input value.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

504

 MpyScalar_M

Description: Scalar and Matrix Multiplier
Library: Numeric, Matrix
Class: SDFMpyScalar_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

2 gain Input gain to be multiplied with the input matrix real

 Pin Outputs

Pin Name Description Signal Type

3 output real matrix

 Notes/Equations

MpyScalar_M multiplies a floating-point (real) matrix by a scalar input value.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

505

 MxCom_M

Description: Composed Matrix
Library: Numeric, Matrix
Class: SDFMxCom_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

OutputNumRows number of rows for output matrix 100 int [InputNumRows, ∞)†

OutputNumColumns number of columns for output
matrix

100 int [InputNumColumns,
∞)††

InputNumRows number of rows for input matrix 4 int [1, ∞)

InputNumColumns number of columns for input matrix 4 int [1, ∞)

† must be an integer multiple of InputNumRows
†† must be an integer multiple of InputNumColumns

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

Each output matrix is composed from the input submatrices. The output matrix is1.
filled with input submatrices in rasterized order; that is, the top of the output matrix
is filled first, from left to right, with the first input matrices.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

506

 MxDecom_M

Description: Decomposed Matrix
Library: Numeric, Matrix
Class: SDFMxDecom_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

StartRow starting row in input matrix to generate output matrices
(first row is 1)

1 int [1, ∞)

StartCol starting column in input matrix to generate output
matrices (first column is 1; therefore, the upper left
corner of the matrix is (1,1)

1 int [1, ∞)

InputNumRows number of rows for input matrix 100 int [OutputNumRows,
∞)†

InputNumCols number of columns from input matrix to use to
generate the output matrices.

100 int [OutputNumCols,
∞)††

OutputNumRows number of rows for output matrix 4 int [1, ∞)

OutputNumCols number of columns for output matrix 4 int [1, ∞)

† must be an integer multiple of OutputNumRows
†† must be an integer multiple of OutputNumCols

 Pin Inputs

Pin Name Description Signal Type

1 input Input matrix to be decomposed into the output
submatrices.

real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output Output matrices with dimensions
OutputNumRows*OutputNumCols.

real matrix

 Notes/Equations

All or part of the input matrix is decomposed into a sequence of output submatrices.1.
The part of input matrix to be decomposed is specified by StartRow, StartCol,
InputNumRows, and InputNumColumns. The dimensions of each output submatrix
are specified by the OutputNumRows and OutputNumColumns.

Advanced Design System 2011.01 - Numeric Components

507

For each input matrix, the number of output matrices is:2.

For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

508

 PackCx_M

Description: Pack Complex Matrix
Library: Numeric, Matrix
Class: SDFPackCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in output matrix 2 int [1, ∞)

NumCols number of columns in output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input complex

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

PackCx_M constructs a complex output matrix from scalar input values. Inputs are1.
entered into the matrix in rasterized order; for example, for an M×N matrix, the first
row is filled from left to right using the first N input values.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

509

 PackFix_M

Description: Pack Fixed-Point Matrix
Library: Numeric, Matrix
Class: SDFPackFix_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in output matrix 2 int [1, ∞)

NumCols number of columns in output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input fix

 Pin Outputs

Pin Name Description Signal Type

2 output fix matrix

 Notes/Equations

PackFix_M constructs a fixed-point output matrix from scalar input values. Inputs are1.
entered into the matrix in rasterized order; for example, for an M×N matrix, the first
row is filled from left to right using the first N input values.
There are no fixed-point parameters for this component because fixed-point2.
arithmetic is not performed.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

510

 PackInt_M

Description: Pack Integer Matrix
Library: Numeric, Matrix
Class: SDFPackInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in output matrix 2 int [1, ∞)

NumCols number of columns in output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input int

 Pin Outputs

Pin Name Description Signal Type

2 output int matrix

 Notes/Equations

PackInt_M constructs an integer output matrix from scalar input values. Inputs are1.
entered into the matrix in rasterized order; for example, for an M×N matrix, the first
row is filled from left to right using the first N input values.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

511

 Pack_M

Description: Pack Matrix
Library: Numeric, Matrix
Class: SDFPack_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in output matrix 2 int [1, ∞)

NumCols number of columns in output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

Pack_M constructs a complex output matrix from scalar input values. Inputs are1.
entered into the matrix in rasterized order; for example, for an M×N matrix, the first
row is filled from left to right using the first N input values.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

512

 SampleMean_M

Description: Mean Value Matrix
Library: Numeric, Matrix
Class: SDFSampleMean_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

SampleMean_M finds the average value of the elements of the input matrix.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

513

 SubCx_M

Description: Complex Subtraction
Library: Numeric, Matrix
Class: SDFSubCx_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 pos complex matrix

2 neg multiple complex matrix

 Pin Outputs

Pin Name Description Signal Type

3 output complex matrix

 Notes/Equations

SubCx_M outputs the pos input matrix minus all of the neg inputs.1.
All input matrices must be of the same dimensions.2.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

514

 SubFix_M

Description: Fixed Subtraction
Library: Numeric, Matrix
Class: SDFSubFix_M
Derived From: SDFFix

h5 Parameters

Name Description Default Type

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 pos fix matrix

2 neg multiple fix
matrix

 Pin Outputs

Pin Name Description Signal Type

3 output fix matrix

 Notes/Equations

SubFix_M outputs the pos input matrix minus the neg inputs.1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs2.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
All input matrices must be of the same dimensions.3.

Advanced Design System 2011.01 - Numeric Components

515

If UseArrivingPrecision = YES, then components that send a NULL particle on their4.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to5.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

516

 SubInt_M

Description: Integer Subtraction
Library: Numeric, Matrix
Class: SDFSubInt_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 pos int matrix

2 neg multiple int
matrix

 Pin Outputs

Pin Name Description Signal Type

3 output int matrix

 Notes/Equations

SubInt_M outputs the pos input matrix minus all of the neg inputs.1.
All input matrices must be of the same dimensions.2.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

517

 Sub_M

Description: Subtraction
Library: Numeric, Matrix
Class: SDFSub_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 pos real matrix

2 neg multiple real
matrix

 Pin Outputs

Pin Name Description Signal Type

3 output real matrix

 Notes/Equations

Sub_M outputs the pos input matrix minus all neg inputs.1.
All input matrices must be of the same dimensions.2.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

518

 SubMxCx_M

Description: Complex Submatrix
Library: Numeric, Matrix
Class: SDFSubMxCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

StartRow starting row in the submatrix within the input matrix. The first (top) row in
a matrix is 1.

1 int [1, ∞)

StartCol starting column in the submatrix within the input matrix. The first (left)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).

1 int [1, ∞)

NumRows number of rows for submatrix 1 int [1, ∞)

NumCols number of columns for submatrix 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

Output matrix is a submatrix of the input matrix. The parameters specify the size and1.
position of the output submatrix from within the input matrix.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

519

 SubMxFix_M

Description: Fixed Submatrix
Library: Numeric, Matrix
Class: SDFSubMxFix_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

StartRow starting row in the submatrix within the input matrix. The first (top) row in
a matrix is 1.

1 int [1, ∞)

StartCol starting column in the submatrix within the input matrix. The first (left)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).

1 int [1, ∞)

NumRows number of rows for submatrix 2 int [1, ∞)

NumCols number of columns for submatrix 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input fix matrix

 Pin Outputs

Pin Name Description Signal Type

2 output fix matrix

 Notes/Equations

Output matrix is a submatrix of the input matrix. The parameters specify the size and1.
position of the output submatrix from within the input matrix.
There are no fixed-point parameters because fixed-point arithmetic is not performed.2.
The output precision is the same as the input precision.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

520

 SubMxInt_M

Description: Integer Submatrix
Library: Numeric, Matrix
Class: SDFSubMxInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

StartRow starting row in the submatrix within the input matrix. The first (top) row in
a matrix is 1.

1 int [1, ∞)

StartCol starting column in the submatrix within the input matrix. The first (left)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).

1 int [1, ∞)

NumRows number of rows for submatrix 1 int [1, ∞)

NumCols number of columns for submatrix 1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input int matrix

 Pin Outputs

Pin Name Description Signal Type

2 output int matrix

 Notes/Equations

The output matrix is a submatrix of the input matrix. The parameters specify the size1.
and position of the output submatrix from within the input matrix.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

521

 SubMx_M

Description: Submatrix
Library: Numeric, Matrix
Class: SDFSubMx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

StartRow starting row in the submatrix within the input matrix. The first (top) row in
a matrix is 1.

1 int [1, ∞)

StartCol starting column in the submatrix within the input matrix. The first (left)
column in a matrix is 1; therefore, the upper left corner of the matrix is
(1,1).

1 int [1, ∞)

NumRows number of rows for submatrix 2 int [1, ∞)

NumCols number of columns for submatrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

Output matrix is a submatrix of the input matrix. The parameters specify the size and1.
position of the output submatrix from within the input matrix.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

522

 SVD_M

Description: Singular Value Decomposition of a Toeplitz Matrix
Library: Numeric, Matrix
Class: SDFSVD_M
Derived From: MatrixBase
C++ Code: See doc/sp_items/SDFSVD_M.html under your installation directory.

 Parameters

Name Description Default Type Range

Threshold threshold for similarities; algorithm assumes values
below Threshold have reached zero

0.00000000000000001 real (-∞,
∞)

MaxIterations maximum iterations for SVD convergence 30 int [1, ∞)

GenerateLeft matrix generation of left singular vectors: Do not
Generate Left Singular Vectors, Generate Left
Singular Vectors

Generate Left Singular
Vectors

enum

GenerateRight matrix generation of right singular vectors: Do not
Generate Right Singular Vectors, Generate Right
Singular Vectors

Generate Right Singular
Vectors

enum

 Pin Inputs

Pin Name Description Signal Type

1 input Input stream. real matrix

 Pin Outputs

Pin Name Description Signal Type

2 svals The singular values of input - The diagonal of "W". real matrix

3 rsvec Right singular vectors of input - "V". real matrix

4 lsvec Left singular vectors of input - "W". real matrix

 Notes/Equations

SVD_M computes the singular-value decomposition (SVD) of an input Toeplitz matrix A1.
by decomposing A into A = UWV′, where U and V are orthogonal matrices and V′
represents the transpose of V.
The input matrix must be a Toeplitz matrix. The output S is the diagonal of the2.
matrix W, the output L is the matrix U, and the output R is the matrix V. If the input
matrix is of size M rows by N columns, the output S will be of size N × 1, output L will
be of size M × N, and output R will be of size N × N.
The MaxIterations parameter allows the designer to control the number of iterations3.
that the SVD algorithm will be allowed to run before stopping. Normally, the SVD
algorithm will converge before this number of iterations is reached but this parameter

Advanced Design System 2011.01 - Numeric Components

523

is provided to prevent non-convergent matrices from causing the component to run
too long.
The execution time of SVD_M may be reduced by using the GenerateLeft and4.
GenerateRight parameters to specify that the matrices of the left and right singular
vectors not be generated. The vector of singular values (the S output) is always
generated.
S. Haykin, Modern Filters, pp. 333-335, Macmillan Publishing Company, New York,5.
1989.
See Also: Toeplitz_M (numeric)6.
For general information regarding numeric matrix component signals, refer to7.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

524

 TableCx_M

Description: Complex Lookup Table Matrix
Library: Numeric, Matrix
Class: SDFTableCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows for each matrix in the table 1 int [1, ∞)

NumCols number of columns for each matrix in the table 1 int [1, ∞)

ComplexTable table containing matrices. Each matrix with dimensions
NumRows x NumCols is given in row major ordering.

1.0+j 1.0-j (-
1.0+j) (-1.0-j)

complex
array

†

† ComplexTable number of elements must be an integer multiple of the output matrix size
(NumRows NumCols)

 Pin Inputs

Pin Name Description Signal Type

1 input the index for table lookup. The first matrix is index "0" int

 Pin Outputs

Pin Name Description Signal Type

2 output the matrix in the table corresponding to the
index.

complex matrix

 Notes/Equations

TableCx_M implements a matrix lookup table indexed by an integer-valued input. The1.
output will be a the matrix corresponding to the index input. The input must be from
0 to N − 1, inclusive, where N is the number of matrices in the table. ComplexTable
specifies the entries of matrices in the table.
Entries of each matrix in the table should be given in row major ordering. Therefore,
the upper left corner entry of the first matrix is the first value in the table, and the
first NumCols items in the table parameter make up the first row of the first matrix in
the table.
An error occurs if the index input value is out of bounds.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the the

Advanced Design System 2011.01 - Numeric Components

525

ADS Ptolemy Simulation (ptolemy) documentation.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

526

 TableInt_M

Description: Integer Lookup Table Matrix
Library: Numeric, Matrix
Class: SDFTableInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows for each matrix in the table 1 int [1, ∞)

NumCols number of columns for each matrix in the table 2 int [1, ∞)

IntTable table containing matrices. Each matrix with dimensions NumRows x
NumCols is given in row major ordering.

1 1 1 -1 -1 1
-1 -1

int
array

†

† IntTable number of elements must be an integer multiple of the output matrix size
(NumRows NumCols)

 Pin Inputs

Pin Name Description Signal Type

1 input the index for table lookup. The first matrix is index "0" int

 Pin Outputs

Pin Name Description Signal Type

2 output the matrix in the table corresponding to the
index.

int matrix

 Notes/Equations

TableInt_M implements a matrix lookup table indexed by an integer-valued input.1.
The output will be a the matrix corresponding to the index input. The input must be
from 0 to N − 1, inclusive, where N is the number of matrices in the table. IntTable
specifies the entries of matrices in the table.
The entries of each matrix in the table should be given in row major ordering.2.
Therefore, the upper left corner entry of the first matrix is the first value in the table,
and the first NumCols items in the table parameter make up the first row of the first
matrix in the table.
An error occurs if the index input value is out of bounds.3.
For details on using arrays of data for parameter values, refer to Understanding4.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For general information regarding numeric matrix component signals, refer to5.

Advanced Design System 2011.01 - Numeric Components

527

Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

528

 Table_M

Description: Lookup Table Matrix
Library: Numeric, Matrix
Class: SDFTable_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows for each matrix in the table 2 int [1, ∞)

NumCols number of columns for each matrix in the table 2 int [1, ∞)

FloatTable table containing matrices. Each matrix with dimensions
NumRows x NumCols is given in row major ordering.

0.0 0.0 0.0 0.0 1.0
1.0 1.0 1.0

real
array

†

† FloatTable number of elements must be an integer multiple of the output matrix size
(NumRows NumCols)

 Pin Inputs

Pin Name Description Signal Type

1 input the index for table lookup. The first matrix is index "0" int

 Pin Outputs

Pin Name Description Signal Type

2 output the matrix in the table corresponding to the
index.

real matrix

 Notes/Equations

Table_M implements a matrix lookup table indexed by an integer-valued input. The1.
output will be the matrix corresponding to the index input. The input must be from 0
to N − 1, inclusive, where N is the number of matrices in the table. FloatTable
specifies the entries of matrices in the table.
Entries of each matrix in the table should be given in row major ordering. Therefore,2.
the upper left corner entry of the first matrix is the first value in the table, and the
first NumCols items in the table parameter make up the first row of the first matrix in
the table.
An error occurs if the index input value is out of bounds.3.
For details on these fixed-point parameters refer to Parameters for Fixed-Point4.
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For general information regarding numeric matrix component signals, refer to5.

Advanced Design System 2011.01 - Numeric Components

529

Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

530

 ToeplitzCx_M

Description: Complex Toeplitz Matrix
Library: Numeric, Matrix
Class: SDFToeplitzCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in the output matrix 2 int [1, ∞)

NumCols number of columns in the output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input Input stream. complex

 Pin Outputs

Pin Name Description Signal Type

2 output Data matrix
X.

complex matrix

 Notes/Equations

ToeplitzCx_M builds a rectangular Toeplitz matrix from the input scalar values.1.
ToeplitzCx_M generates an output matrix X, with dimensions NumRows × NumCols,2.
from an input stream of NumRows + NumCols − 1 particles. The output matrix is a
Toeplitz matrix such that
the first row is

the second row is

and so forth until the last row, which is

where NumRows = N − M + 1 and NumCols = M and conversely, M = NumCols and N
= NumRows + NumCols − 1.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

531

 ToeplitzFix_M

Description: Fixed Toeplitz Matrix
Library: Numeric, Matrix
Class: SDFToeplitzFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

UseArrivingPrecision use precision of arriving matrices: NO, YES NO enum

InputPrecision precision of input matrix elements, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

NumRows number of rows in the output matrix 2 int [1, ∞)

NumCols number of columns in the output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input Input stream. fix

 Pin Outputs

Pin Name Description Signal Type

2 output the data matrix
X.

fix matrix

 Notes/Equations

ToeplitzFix_M builds a rectangular Toeplitz matrix from the input scalar values.1.
This component generates an output matrix X, with dimensions NumRows ×2.
NumCols, from an input stream of NumRows + NumCols − 1 particles. The output
matrix is a Toeplitz matrix such that
the first row is

the second row is

Advanced Design System 2011.01 - Numeric Components

532

and so forth until the last row, which is

where NumRows = N − M +1 and NumCols = M and conversely, M = NumCols and N
= NumRows + NumCols − 1.
If the fixed-point operations cannot fit into the precision specified, overflow occurs3.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their4.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
For general information regarding numeric matrix component signals, refer to5.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

533

 ToeplitzInt_M

Description: Integer Toeplitz Matrix
Library: Numeric, Matrix
Class: SDFToeplitzInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in the output matrix 2 int [1, ∞)

NumCols number of columns in the output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input Input stream. int

 Pin Outputs

Pin Name Description Signal Type

2 output the data matrix
X.

int matrix

 Notes/Equations

ToeplitzInt_M builds a rectangular Toeplitz matrix from input scalar values.1.
This component generates an output matrix X, with dimensions NumRows ×2.
NumCols, from an input stream of NumRows + NumCols − 1 particles. The output
matrix is a Toeplitz matrix such that
the first row is

the second row is

and so forth until the last row, which is

where NumRows = N − M + 1 and NumCols = M and conversely M = NumCols and N
= NumRows + NumCols − 1.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

534

 Toeplitz_M

Description: Toeplitz Matrix
Library: Numeric, Matrix
Class: SDFToeplitz_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in the output matrix 2 int [1, ∞)

NumCols number of columns in the output matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input Input stream. real

 Pin Outputs

Pin Name Description Signal Type

2 output the data matrix
X.

real matrix

 Notes/Equations

Toeplitz_M builds a rectangular Toeplitz matrix from the input scalar values.1.
This component generates an output matrix X, with dimensions NumRows2.
× NumCols, from an input stream of NumRows+NumCols− 1particles. The output
matrix is a Toeplitz matrix such that
the first row is

the second row is

and so forth until the last row, which is

where NumRows = N − M +1 and NumCols = M and conversely M = NumCols and N
= NumRows + NumCols − 1.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

535

 TransposeCx_M

Description: Complex Transpose Matrix
Library: Numeric, Matrix
Class: SDFTransposeCx_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex matrix

 Notes/Equations

TransposeCx_M outputs the transpose of the input matrix.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

536

 TransposeFix_M

Description: Fixed Transpose Matrix
Library: Numeric, Matrix
Class: SDFTransposeFix_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input fix matrix

 Pin Outputs

Pin Name Description Signal Type

2 output fix matrix

 Notes/Equations

TransposeFix_M outputs the transpose of the input matrix.1.
There are no fixed-point parameters for this component because fixed-point2.
arithmetic is not performed.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

537

 TransposeInt_M

Description: Integer Transpose Matrix
Library: Numeric, Matrix
Class: SDFTransposeInt_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input int matrix

 Pin Outputs

Pin Name Description Signal Type

2 output int matrix

 Notes/Equations

TransposeInt_M outputs the transpose of the input matrix.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

538

 Transpose_M

Description: Transpose Matrix
Library: Numeric, Matrix
Class: SDFTranspose_M
Derived From: MatrixBase

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real matrix

 Notes/Equations

Transpose_M outputs the transpose of the input matrix.1.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

539

 UnPkCx_M

Description: Unpack Complex Matrix
Library: Numeric, Matrix
Class: SDFUnPkCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in input matrix 2 int [1, ∞)

NumCols number of columns in input matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input complex matrix

 Pin Outputs

Pin Name Description Signal Type

2 output complex

 Notes/Equations

The scalar outputs are each of the elements of the input matrix. The elements are1.
sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

540

 UnPkFix_M

Description: Unpack Fixed Matrix
Library: Numeric, Matrix
Class: SDFUnPkFix_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in input matrix 2 int [1, ∞)

NumCols number of columns in input matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input fix matrix

 Pin Outputs

Pin Name Description Signal Type

2 output fix

 Notes/Equations

The scalar outputs are each of the elements of the input matrix. The elements are1.
sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.
There are no fixed-point parameters for this component because fixed-point2.
arithmetic is not performed.
For general information regarding numeric matrix component signals, refer to3.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

541

 UnPkInt_M

Description: Unpack Integer Matrix
Library: Numeric, Matrix
Class: SDFUnPkInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in the input matrix 2 int [1, ∞)

NumCols number of columns in the input
matrix

2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input int matrix

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

The scalar outputs are each of the elements of the input matrix. The elements are1.
sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

542

 UnPk_M

Description: Unpack Matrix
Library: Numeric, Matrix
Class: SDFUnPk_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

NumRows number of rows in input matrix 2 int [1, ∞)

NumCols number of columns in input matrix 2 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real matrix

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

The scalar outputs are each of the elements of the input matrix. The elements are1.
sent to the output row-by-row, top-to-bottom. Top row entries are sent first (left to
right) followed by the next row down, and so on.
For general information regarding numeric matrix component signals, refer to2.
Numeric Matrix Components (numeric).

Advanced Design System 2011.01 - Numeric Components

543

 Numeric Signal Processing Components
Autocor (numeric)
Biquad (numeric)
BiquadCascade (numeric)
BlockAllPole (numeric)
BlockFIR (numeric)
BlockLattice (numeric)
BlockRLattice (numeric)
Burg (numeric)
ConvolCx (numeric)
Convolve (numeric)
CrossCorr (numeric)
DelayEstimator (numeric)
DTFT (numeric)
FFT Cx (numeric)
FIR (numeric)
FIR Cx (numeric)
FIR Fix (numeric)
Hilbert (numeric)
IIR (numeric)
IIR Cx (numeric)
IIR Fix (numeric)
Lattice (numeric)
LevDur (numeric)
LMS (numeric)
LMS Cx (numeric)
LMS Leak (numeric)
LMS OscDet (numeric)
PattMatch (numeric)
RLattice (numeric)
SlidWinAvg (numeric)

The numeric signal processing components provide basic signal processing functions on
single data points or arrays of data that are integer, double precision floating-point (real),
fixed-point (fixed), or complex values. Each component accepts a specific class of signal
and outputs a resultant signal. (These components do not accept any matrix class of
signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30; a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components accept parameter values that are arrays of data. The syntax for

Advanced Design System 2011.01 - Numeric Components

544

referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more
parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components refer to Parameters for
Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point
(used as sign bit).

Advanced Design System 2011.01 - Numeric Components

545

 Autocor

Description: Autocorrelation estimator
Library: Numeric, Signal Processing
Class: SDFAutocor
C++ Code: See doc/sp_items/SDFAutocor.html under your installation directory.

 Parameters

Name Description Default Symbol Unit Type Range

NoInputsToAvg number of input samples to average 256 N int (NoLags, ∞)

NoLags number of lags to output 64 L int (0, ∞)

Unbiased autocorrelation estimate bias: NO, YES YES enum

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

Autocor estimates the autocorrelation function of the input signal. Every time the1.
component fires it reads N samples from its input and outputs 2×L values to its
output.
The output values represent the values of the input signal's autocorrelation function

,
evaluated for k = −L + 1, ... , L

(!numeric-09-02-03.gif! is output first and is output last).
The 2 × L values written to the output make the output almost symmetrical (discard
the last sample to get a perfectly symmetric output).
Both unbiased and biased estimates are supported.2.

If Unbiased=YES, the autocorrelation estimate is

Advanced Design System 2011.01 - Numeric Components

546

The unbiased estimate does not guarantee a positive definite sequence, so a
power spectral estimate based on this autocorrelation estimate may have
negative components.
If Unbiased = NO, the autocorrelation estimate is

This estimate is biased because the outermost lags have fewer than N terms in
the summation, yet the summation is still normalized by N.

For general information regarding numeric signal processing component signals, refer3.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

547

 Biquad

Description: Biquad IIR Filter
Library: Numeric, Signal Processing
Class: SDFBiquad
C++ Code: See doc/sp_items/SDFBiquad.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

D1 first-order denominator coefficient -1.1430 real (-∞, ∞)

D2 second-order denominator coefficient 0.41280 real (-∞, ∞)

N0 zeroth-order numerator coefficient 0.067455 real (-∞, ∞)

N1 first-order numerator coefficient 0.135 real (-∞, ∞)

N2 second-order numerator coefficient 0.067455 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Biquad is a 2-pole, 2-zero digital IIR filter (a biquad). This IIR filter has a Z-domain1.
transfer function of

(8-1)
The default is a Butterworth filter with a cutoff 0.1 times sampling frequency.
The transfer function in Eq. (8-1) results in the following second order difference2.
equation.

where
y(n) is the output for sample n
x(n) is the input for sample n
The transfer function in Eq. (8-1) is a linear time invariant system and can be3.

Advanced Design System 2011.01 - Numeric Components

548

rearranged to yield difference equation in direct form II as shown in Yield Difference
Equation in Direct Form II.
Indeed, it is the minimum number of delay elements required to implement a system
with transfer function given by Eq. (8-1). An implementation with the minimum
number of delay elements is also referred to as a canonic form implementation.

 Yield Difference Equation in Direct Form II

See also: IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).4.
For general information regarding numeric signal processing component signals, refer5.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

549

 BiquadCascade

Description: IIR filter with cascaded biquad IIR sections
Library: Numeric, Signal Processing
Class: SDFBiquadCascade

 Parameters

Name Description Default Unit Type Range

Taps sets of six biquad coefficients 0.067455 0.135 0.067455 1.0 -1.143 0.4128 real array

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal
Type

2 output The outputs from each of the biquads in the cascade,\n starting with the output
from last.

multiple real

 Notes/Equations

BiquadCascade is a cascade of 2-pole, 2-zero digital IIR filter (a biquad). This IIR1.
filter has a Z-domain transfer function of

Each biquad section is defined by six coefficients in order: N 0i N 1i N 2i D 0i D 1i D 2i .2.

The multi-output pin contains each of the outputs of the cascade, starting with the3.
output from the last.
See also: Biquad (numeric), IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).4.
For general information regarding numeric signal processing component signals, refer5.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

550

Advanced Design System 2011.01 - Numeric Components

551

 BlockAllPole

Description: All-Pole Filter for Data Blocks
Library: Numeric, Signal Processing
Class: SDFBlockAllPole
C++ Code: See doc/sp_items/SDFBlockAllPole.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of inputs that use each coefficient set 128 int (0, ∞)

Order number of new coefficients to read each time 16 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

2 coefs Coefficients of the denominator polynomial real

 Pin Outputs

Pin Name Description Signal Type

3 signalOut real

 Notes/Equations

BlockAllPole implements an all-pole filter with coefficients that are periodically1.
updated from the outside. For each set of coefficients, a block of input samples is
processed, all in one firing.
The BlockSize parameter tells how often the updates occur. This integer parameter2.
specifies how many input samples are to be processed using each set of coefficients.
The Order parameter tells how many coefficients there are.
The transfer function of the filter is3.

where the d values are the externally specified coefficients and M is the value of the
Order parameter.
Decimation or interpolation is not supported.4.
See also: IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).5.
For general information regarding numeric signal processing component signals, refer6.
to Numeric Signal Processing Components (numeric).

Advanced Design System 2011.01 - Numeric Components

552

 BlockFIR

Description: FIR filter for data blocks
Library: Numeric, Signal Processing
Class: SDFBlockFIR
C++ Code: See doc/sp_items/SDFBlockFIR.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of inputs that use each coefficient set 128 int (0, ∞)

Order number of new coefficients to read each time 16 int (0, ∞)

Decimation decimation ratio 1 int (0, ∞)

DecimationPhase decimation phase 0 int [0, Decimation-1]

Interpolation interpolation ratio 1 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

2 coefs real

 Pin Outputs

Pin Name Description Signal Type

3 signalOut real

 Notes/Equations

BlockFIR implements an FIR filter with coefficients that are periodically updated from1.
the outside. For each set of coefficients, a block of input samples is processed, all in
one firing.
The BlockSize parameter tells how often updates occur. This integer parameter
specifies how many input samples are to be processed using each set of coefficients.
The Order parameter tells the number of coefficients.
This filter efficiently implements rational sample rate changes. When the Decimation2.
ratio is ≥1 the filter behaves as if it were followed by a DownSample component;
when the Interpolation ratio is set, the filter behaves as if it were preceded by an
UpSample component. However, the implementation is much more efficient than it
would be using UpSample and DownSample. A polyphase structure is used internally,
avoiding unnecessary use of memory and multiplication by 0. Arbitrary sample-rate
conversions by rational factors can be accomplished this way.
The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase3.
parameter of the DownSample component. When decimating, samples are

Advanced Design System 2011.01 - Numeric Components

553

conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). To decimate by a factor of three, one of every three outputs
is selected. The DecimationPhase parameter determines which of these is selected.
When DecimationPhase is 0 (default) the most recent samples are the ones selected.
When designing a multirate filter, avoid aliasing. One may assume that the filter4.
sample rate is the product of the Interpolation parameter and the input sample rate.
Equivalently, one may use the product of the Decimation parameter and the output
sample rate.
See also: IIR (numeric), IIR_Cx (numeric), IIR_Fix (numeric).5.
For general information regarding numeric signal processing component signals, refer6.
to Numeric Signal Processing Components (numeric).

 References

F. J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of1.
Digital Signal Processing, Academic Press, 1987.

Advanced Design System 2011.01 - Numeric Components

554

 BlockLattice

Description: Forward Lattice Filter for Data Blocks
Library: Numeric, Signal Processing
Class: SDFBlockLattice
C++ Code: See doc/sp_items/SDFBlockLattice.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of inputs that use each coefficient set 128 int (0, ∞)

Order number of new coefficients to read each time 16 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

2 coefs real

 Pin Outputs

Pin Name Description Signal Type

3 signalOut real

 Notes/Equations

BlockLattice implements a forward lattice filter with coefficients that are periodically1.
updated from the outside. For each set of coefficients, a block of input samples is
processed, all in one firing.
The BlockSize parameter tells how often the updates occur. This parameter specifies
how many input samples are to be processed using each set of coefficients. The
Order parameter tells the number of coefficients.
The structure of this filter is shown below. The reflection (PARCOR) coefficients2.
should be specified left to right, K 1 to K n , as shown.

 BlockLattice Filter Structure

Advanced Design System 2011.01 - Numeric Components

555

The definition of reflection coefficients varies in the literature. The reflection3.
coefficients in [2] and [3] are the negative of the ones used by BlockLattice, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.
The signs of the coefficients used in BlockLattice are appropriate for values given by
the LevDur and Burg components.
See also: BlockRLattice (numeric), Lattice (numeric), RLattice (numeric).4.
For general information regarding numeric signal processing component signals, refer5.
to Numeric Signal Processing Components (numeric).

 References

J. Makhoul, "Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580, Apr.1.
1975.
S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,2.
Englewood Cliffs, NJ, 1988.
S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.3.

Advanced Design System 2011.01 - Numeric Components

556

 BlockRLattice

Description: Recursive Lattice Filter for Data Blocks
Library: Numeric, Signal Processing
Class: SDFBlockRLattice
C++ Code: See doc/sp_items/SDFBlockRLattice.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

BlockSize number of inputs that use each coefficient set 128 int (0, ∞)

Order number of new coefficients to read each time 16 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

2 coefs real

 Pin Outputs

Pin Name Description Signal Type

3 signalOut real

 Notes/Equations

BlockRLattice implements a block recursive lattice filter with coefficients that are1.
periodically updated from the outside. For each set of coefficients, a block of input
samples is processed, all in one firing.
The BlockSize parameter tells how often the updates occur. This parameter specifies
how many input samples are to be processed using each set of coefficients. The
Order parameter tells the number of coefficients.
The filter structure is shown below. The reflection (or PARCOR) coefficients should be2.
entered from K 1 to K n , where K 1 through K n are specified as shown.

 BlockRLattice Filter Structure

Advanced Design System 2011.01 - Numeric Components

557

The definition of reflection coefficients varies in the literature. The reflection3.
coefficients in [2] and [3] are the negative of the ones used by BlockRLattice, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.
The signs of the coefficients used in BlockRLattice are appropriate for values given by
the LevDur and Burg components.
See also: BlockLattice (numeric), Lattice (numeric), RLattice (numeric).4.
For general information regarding numeric signal processing component signals, refer5.
to Numeric Signal Processing Components (numeric).

 References

J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580,1.
Apr. 1975.
S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,2.
Englewood Cliffs, NJ, 1988.
S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.3.

Advanced Design System 2011.01 - Numeric Components

558

 Burg

Description: Linear predictor coefficients estimator
Library: Numeric, Signal Processing
Class: SDFBurg
C++ Code: See doc/sp_items/SDFBurg.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Order order of the regression (also number of coefficients to generate) 8 int (0, ∞)

NumInputs number of inputs used to generate each set of coefficients 64 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input Input random process. real

 Pin Outputs

Pin Name Description Signal Type

2 lp AR coefficients output. real

3 refl Lattice predictor coefficients output. real

4 errPower Prediction error power. real

 Notes/Equations

Burg uses Burg's algorithm to estimate the linear predictor coefficients of an input1.
random process. The number of inputs looked at is given by the NumInputs
parameter and the order of the autoregressive (AR) model is given by the Order
parameter. Order specifies how many outputs appear on the lp and refl output
portholes.
These outputs are, respectively, the autoregressive (AR) parameters (also called the
linear predictor parameters), and the reflection coefficients. The autoregressive (AR)
coefficients are the estimated coefficients of the all-pole filter that could have
produced the observations (input data) given a white noise input.
The definition of reflection coefficients varies in the literature. The reflection2.
coefficients in [2] and [3] are the negative of the ones generated by Burg, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.
The errPower output is the power of the prediction error as a function of the model3.
order. There are Order+1 output samples, and the first sample corresponds to the
prediction error of a 0th order predictor. This is simply an estimate of the input signal
power.
See also: BlockAllPole (numeric), BlockLattice (numeric), BlockRLattice (numeric),4.

Advanced Design System 2011.01 - Numeric Components

559

LevDur (numeric).
For general information regarding numeric signal processing component signals, refer5.
to Numeric Signal Processing Components (numeric).

 References

J. Makhoul, "Linear Prediction: A Tutorial Review", Proc. IEEE, Vol. 63, pp. 561-580,1.
Apr. 1975.
S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,2.
Englewood Cliffs, NJ, 1988.
S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.3.

Advanced Design System 2011.01 - Numeric Components

560

 ConvolCx

Description: Complex causal convolution
Library: Numeric, Signal Processing
Class: SDFConvolCx
C++ Code: See doc/sp_items/SDFConvolCx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

TruncationDepth maximum number of terms in convolution sum 256 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 inA complex

2 inB complex

 Pin Outputs

Pin Name Description Signal Type

3 out complex

 Notes/Equations

ConvolCx convolves two complex causal finite sequences. Set TruncationDepth larger1.
than the number of output samples of interest; if it is smaller, you will get
unexpected results after TruncationDepth samples.
If one input has finite length and does not change over time, whereas the other input2.
can be arbitrarily long, use the FIR_Cx (numeric) component. Set the Taps
parameter of the FIR_Cx component to the values of the finite length sequence. For
example, if the finite length sequence is (1.5,3.1), (2.8,1.2), (−1.9,0.4), set Taps to
"(1.5,3.1) (2.8,1.2) (−1.9,0.4)".
See also: Convolve (numeric).3.
For general information regarding numeric signal processing component signals, refer4.
to Numeric Signal Processing Components (numeric).

Advanced Design System 2011.01 - Numeric Components

561

 Convolve

Description: Causal Convolution
Library: Numeric, Signal Processing
Class: SDFConvolve
C++ Code: See doc/sp_items/SDFConvolve.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

TruncationDepth maximum number of terms in convolution sum 256 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 inA real

2 inB real

 Pin Outputs

Pin Name Description Signal Type

3 out real

 Notes/Equations

Convolve convolves two causal finite sequences. Set TruncationDepth larger than the1.
number of output samples of interest; if it is smaller, you will get unexpected results
after TruncationDepth samples.
If one input has finite length and does not change over time, whereas the other input2.
can be arbitrarily long, use the FIR (numeric) component. Set the Taps parameter of
the FIR component to the values of the finite length sequence. For example, if the
finite length sequence is 1.5, 3.1, 2.8, 1.2, −1.9, 0.4, set Taps to "1.5 3.1 2.8 1.2
−1.9 0.4".
If one input has finite length and changes over time, whereas the other input can be
arbitrarily long, use the BlockFIR component. BlockFIR allows filtering of a signal in
fixed size blocks where each input block is filtered with a different set of coefficients.
See also: ConvolCx (numeric).3.
For general information regarding numeric signal processing component signals, refer4.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.

Advanced Design System 2011.01 - Numeric Components

562

Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

563

 CrossCorr

Description: Cross-correlation
Library: Numeric, Signal Processing
Class: SDFCrossCorr
C++ Code: See doc/sp_items/SDFCrossCorr.html under your installation directory.

 Parameters

Name Description Default Symbol Unit Type Range

NoInputsToAvg number of input samples to average 256 N int (NoLags, ∞)

NoLags number of lags to output 64 L int (0, ∞)

Unbiased autocorrelation estimate bias: NO, YES YES enum

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

2 input2 second input signal real

 Pin Outputs

Pin Name Description Signal Type

3 output output signal real

4 delay delay of input2 with respect to input1 int

 Notes/Equations

CrossCorr estimates the cross-correlation function of its two inputs. Every time the1.
component fires it reads N samples from each of its two inputs.
The number of values written on the output pin is 2×L. These values represent the
values of the cross-correlation function

,
evaluated for k = −L + 1, ..., L

(!numeric-09-12-25.gif! is output first and is output last).
One sample per firing is written on delay pin 4; it represents the estimated delay (in
number of samples) of the second input signal with respect to the first input signal
(negative values mean that the signal at pin 1 is delayed with respect to the signal at
pin 2).
Both unbiased and biased estimates are supported.2.

If Unbiased = YES, the autocorrelation estimate is

Advanced Design System 2011.01 - Numeric Components

564

If Unbiased = NO, the cross-correlation estimate is

This estimate is biased because the outermost lags have fewer than N terms in
the summation, and yet the summation is still normalized by N.

For general information regarding numeric signal processing component signals, refer3.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

565

 DelayEstimator

Description: Delay Estimate
Library: Numeric, Signal Processing
Class: SDFDelayEstimator
C++ Code: See doc/sp_items/SDFDelayEstimator.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

MaxSampleDelay Maximum delay estimate samples 100 int [0, Tstop]

 Pin Inputs

Pin Name Description Signal Type

1 Ref Reference input complex

2 Test Test input complex

 Pin Outputs

Pin Name Description Signal Type

3 Delay Delay estimate int

 Notes/Equations

This component is used to estimate the delay between two different nodes in an RF1.
subsystem. When simulating multirate PLL systems, it is important to determine the
RF subsystem delay.
The structure of this component is shown in DelayEstimator Structure.
This is a single-rate component. Each firing, one input token is consumed for both2.
Ref pin 1 and Test pin 2 and one output token is produced.
Pin 1 must be connected to a reference signal and pin 2 must be connected to a test
signal. The estimated sample delay for the test signal relative to the reference signal
will be output.
The basic principle for detecting the delay is to perform a cross-correlation for two3.
signals in different nodes.
Two input complex signals are converted to an I,Q signal by two CxToPolar
components, then sent to CrossCorr for performing a cross-correlation to detect the
delay between the input signals. To make a single-rate component, the estimated
delay is repeated by using a Repeat component then output.
The MaxSampleDelay parameter is the upper bound for sample delay estimation; the4.
delay estimate is based on MaxSampleDelay number of input samples.

 DelayEstimator Structure

Advanced Design System 2011.01 - Numeric Components

566

 DelayEstimator Structure

 References

M. Jeruchim, P. Balaban and K. Shanmugan, "Simulation of Communication System,"1.
Plenum Press, New York and London, 1992.

Advanced Design System 2011.01 - Numeric Components

567

 DTFT

Description: Discrete-time Fourier transform
Library: Numeric, Signal Processing
Class: SDFDTFT

 Parameters

Name Description Default Symbol Unit Type Range

Length length of input signal 8 L int (0, ∞)

NumberOfSamples number of transform samples to output 128 N int (0, ∞)

TimeBetweenSamples time between input samples (T) 1.0 T real (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signal Signal to be transformed. complex

2 omega Frequency values at which to sample the transform. real

 Pin Outputs

Pin Name Description Signal Type

3 dtft The samples of the transform. complex

 Notes/Equations

DTFT calculates the discrete-time Fourier transform (DTFT) of the sequence applied1.
at its signal input at each of the frequency points specified on the omega input. Every
time the component fires it reads L samples from its signal input and N samples from
its omega input and writes N samples to its output.
The DTFT of a sequence x[n] is a continuous function of ω defined by2.

If sequence x[n] is obtained by sampling a continuous time signal x c (t) at intervals

of T s , that is x[n] = x c (nTs), and if X c (f), the continuous-time Fourier transform

of x c (t), equals 0 for f > 1/(2T), then X(jω) and X c (f) have the following

relationship:

Advanced Design System 2011.01 - Numeric Components

568

, for f < 1 / (2T).
The DTFT component can calculate X(jω) at arbitrary values of ω for sequences x[n]3.
of finite length. Let the L values on the signal input be x[0], x[1], ... , x[L − 1] and
the N values on the omega input be ω[0], ω[1], ... , ω[Ν − 1]. Then the N values at
the output are:

, i = 0, 1, ... , N − 1.
where T is the time between samples (TimeBetweenSamples). Notice that in this last
formula the exponent of e has the extra term T compared to the formula defining the
DTFT. Therefore, to calculate the Fourier transform of the corresponding continuous
time signal xc(t) at the frequencies f i , i = 0, 1, ... , N, generate the values ω i = 2πf

i and apply them at the omega input. And, scale the output by T. The values f i do

not need to span the entire frequency range of the signal or be equally spaced.
To access the example that shows how this component is used: from the Main4.
window, choose File > Open > Example > PtolemyDocExamples >
Numeric_Signal_Processing_wrk; from the Schematic window, choose File >
Open Design, DTFT_example.
For general information regarding numeric signal processing component signals, refer5.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

569

 FFT_Cx

Description: Complex fast Fourier transform
Library: Numeric, Signal Processing
Class: SDFFFT_Cx
C++ Code: See doc/sp_items/SDFFFT_Cx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Order base 2 of the transform size 8 int [0, ∞)

Size number of input samples to read 256 int [1, 2 Order]

Direction direction of transform: Inverse, Forward Forward enum

 Pin Inputs

Pin Name Description Signal Type

1 input complex

 Pin Outputs

Pin Name Description Signal Type

2 output complex

 Notes/Equations

FFT algorithms are based on the fundamental principle of decomposing the1.
computation of the discrete Fourier transform of a sequence of length N into
successively smaller DFT. Many different algorithms are generated based on the
decomposing principle, all with comparable improvements in computational speed.
FFT_Cx calculates the DFT of a complex input using the fast Fourier transform (FFT)2.
algorithm. FFT_Cx reads Size (default 256) complex samples, zero pads the data if
necessary, then takes an FFT of length 2 Order where Size ≤ 2 Order .
The default value of Order is 8. Direction specifies a forward or inverse FFT. A single
firing of FFT_Cx consumes Size inputs and produces 2 Order outputs.
See also: DTFT (numeric).3.
For general information regarding numeric signal processing component signals, refer4.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

570

Advanced Design System 2011.01 - Numeric Components

571

 FIR

Description: FIR filter
Library: Numeric, Signal Processing
Class: SDFFIR
C++ Code: See doc/sp_items/SDFFIR.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Taps filter tap values -.040609 -.001628 .17853 .37665 .37665
.17853 -.001628 -.040609

 real
array

Decimation decimation
ratio

1 int [1, ∞)

DecimationPhase decimation
phase

0 int [0,
Decimation-1]

Interpolation interpolation
ratio

1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

 Pin Outputs

Pin Name Description Signal Type

2 signalOut real

 Notes/Equations

FIR implements a finite-impulse response filter with multirate capability. The default1.
tap coefficients correspond to an eighth-order, equiripple, linear-phase, lowpass
filter. The cutoff frequency is approximately one-third of the Nyquist frequency.
The filter coefficients are specified by the Taps parameter. The filter coefficients may2.
be specified directly or these may be read from a file. To load filter coefficients from a
file, replace the default coefficients with the string <filename, for example,
"</filters/f1.txt", (use an absolute path name for the filename to allow the FIR filter
to work as expected regardless of the directory where the simulation process actually
runs). For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.
This filter efficiently implements rational sample rate changes. When the Decimation3.
ratio is ≥ 1, the filter behaves exactly as if it were followed by a DownSample
component; similarly, when the Interpolation ratio is set, the filter behaves as if it

Advanced Design System 2011.01 - Numeric Components

572

were preceded by an UpSample component. However, the implementation is much
more efficient than it would be using UpSample and DownSample. A polyphase
structure is used internally, avoiding unnecessary use of memory and unnecessary
multiplication by 0. Arbitrary sample-rate conversions by rational factors can be
accomplished this way.
The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase4.
parameter of the DownSample component. When decimating, samples are
conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). For example, to decimate by a factor of 3, one of every 3
outputs is selected. The DecimationPhase parameter determines which of these is
selected. If DecimationPhase is 0 (default), the most recent samples are selected.
When designing a multirate filter, avoid accidentally introducing aliasing. One may5.
assume that the filter sample rate is the product of the Interpolation parameter and
the input sample rate. Equivalently, one may use the product of the Decimation
parameter and the output sample rate.
See also: FIR_Cx (numeric), FIR_Fix (numeric).6.
For general information regarding numeric signal processing component signals, refer7.
to Numeric Signal Processing Components (numeric).

 References

F. J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of1.
Digital Signal Processing, Academic Press, 1987.
A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:2.
Englewood Cliffs, NJ, 1989.
P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Networks, and3.
Applications: A Tutorial," Proc. of the IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990.

Advanced Design System 2011.01 - Numeric Components

573

 FIR_Cx

Description: Complex FIR filter
Library: Numeric, Signal Processing
Class: SDFFIR_Cx
C++ Code: See doc/sp_items/SDFFIR_Cx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Taps filter tap
values

(-.040609,0.0) (-.001628,0.0) (.17853,0.0)
(.37665,0.0)(.37665,0.0) (.17853,0.0) (-
.001628,0.0) (-.040609,0.0)

 complex
array

Decimation decimation
ratio

1 int [1, ∞)

DecimationPhase decimation
phase

0 int [0,
Decimation-
1]

Interpolation interpolation
ratio

1 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn complex

 Pin Outputs

Pin Name Description Signal Type

2 signalOut complex

 Notes/Equations

The FIR_Cx component implements a complex-valued finite-impulse response filter1.
with multirate capability. The default tap coefficients correspond to an eighth-order,
equiripple, linear-phase, lowpass filter. The cutoff frequency is approximately one-
third of the Nyquist frequency.
The filter coefficients are specified by the Taps parameter. The real and imaginary2.
parts should be enclosed in parenthesis, for example (0.1,0.3). The filter coefficients
may be specified directly or these may be read from a file. To load filter coefficients
from a file, replace the default coefficients with the string <filename, for example,
"</filters/f1.txt", (use an absolute path name for the filename to allow the FIR filter
to work as expected regardless of the directory where the simulation process actually
runs).
For details on complex parameter values, refer to Complex-Valued Parameters3.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.

Advanced Design System 2011.01 - Numeric Components

574

For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.
This filter efficiently implements rational sample rate changes. When the Decimation4.
ratio is ≥1, the filter behaves exactly as if it were followed by a DownSample
component; similarly, when the Interpolation ratio is set, the filter behaves as if it
were preceded by an UpSample component. However, the implementation is much
more efficient than it would be using UpSample and DownSample. A polyphase
structure is used internally, avoiding unnecessary use of memory and unnecessary
multiplication by 0. Arbitrary sample-rate conversions by rational factors can be
accomplished this way.
The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase5.
parameter of the DownSample component. When decimating, samples are
conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). For example, to decimate by a factor of 3, one of every 3
outputs is selected. The DecimationPhase parameter determines which of these is
selected. If DecimationPhase is 0 (default), the most recent samples are selected.
When designing a multirate filter, avoid accidentally introducing aliasing. One may6.
assume that the filter sample rate is the product of the Interpolation parameter and
the input sample rate. Equivalently, one may use the product of the Decimation
parameter and the output sample rate.
See also: FIR (numeric), FIR_Fix (numeric).7.
For general information regarding numeric signal processing component signals, refer8.
to Numeric Signal Processing Components (numeric).

 References

F. J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of1.
Digital Signal Processing, Academic Press, 1987.

Advanced Design System 2011.01 - Numeric Components

575

 FIR_Fix

Description: Fixed-Point FIR Filter
Library: Numeric, Signal Processing
Class: SDFFIR_Fix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFFIR_Fix.html under your installation directory.

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic:
wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report
option: DONT_REPORT, REPORT

REPORT enum

RoundFix fixed-point computations,
assignments, and data type
conversions option: TRUNCATE,
ROUND

TRUNCATE enum

Taps filter tap values -.040609 -.001628
.17853 .37665 .37665
.17853 -.001628 -
.040609

fix array

Decimation decimation ratio 1 int [1, ∞)

DecimationPhase decimation phase 0 int [0,
Decimation-
1]

Interpolation interpolation ratio 1 int [1, ∞)

UseArrivingPrecision use precision of arriving data: NO,
YES

NO enum

InputPrecision precision of input signal, in bits (used
only if UseArrivingPrecision is set to
NO)

2.14 precision

TapPrecision precision of tap values, in bits 2.14 precision

AccumulationPrecision precision of accumulation, in bits 2.14 precision

OutputPrecision precision of output in bits and
accumulation

2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 signalIn fix

 Pin Outputs

Advanced Design System 2011.01 - Numeric Components

576

Pin Name Description Signal Type

2 signalOut fix

 Notes/Equations

FIR implements a finite-impulse response filter with fixed-point capability. The default1.
tap coefficients correspond to an eighth-order, equiripple, linear-phase, lowpass
filter. The cutoff frequency is approximately one-third of the Nyquist frequency.
The filter coefficients are specified by the Taps parameter. During filter output2.
computation, the precision of the filter taps is converted according to the
TapPrecision parameter. The filter coefficients may be specified directly or these may
be read from a file. To load filter coefficients from a file, replace the default
coefficients with the string <filename, for example, "</filters/f1.txt", (use an
absolute path name for the filename to allow the FIR filter to work as expected
regardless of the directory where the simulation process actually runs). For details on
using arrays of data for parameter values, refer to Understanding Parameters
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
This filter efficiently implements rational sample rate changes. When the Decimation3.
ratio is ≥1, the filter behaves exactly as if it were followed by a DownSample
component; similarly, when the Interpolation ratio is set, the filter behaves as if it
were preceded by an UpSample component. However, the implementation is much
more efficient than it would be using UpSample and DownSample. A polyphase
structure is used internally, avoiding unnecessary use of memory and unnecessary
multiplication by 0. Arbitrary sample-rate conversions by rational factors can be
accomplished this way.
The DecimationPhase parameter is somewhat subtle. It is equivalent to the Phase4.
parameter of the DownSample component. When decimating, samples are
conceptually discarded (although a polyphase structure does not actually compute
the discarded samples). For example, to decimate by a factor of 3, one of every 3
outputs is selected. The DecimationPhase parameter determines which of these is
selected. If DecimationPhase is 0 (default), the most recent samples are selected.
When designing a multirate filter, avoid accidentally introducing aliasing. One may5.
assume that the filter sample rate is the product of the Interpolation parameter and
the input sample rate. Equivalently, one may use the product of the Decimation
parameter and the output sample rate.
If the fixed-point operations cannot fit into the precision specified, overflow occurs6.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision. TapPrecision indicates how many bits are used to
represent the filter taps.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their7.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
See also: FIR (numeric), FIR_Cx (numeric), DownSample (numeric), UpSample8.
(numeric).
For general information regarding numeric signal processing component signals, refer9.

Advanced Design System 2011.01 - Numeric Components

577

to Numeric Signal Processing Components (numeric).

 References

F. J. Harris, "Multirate FIR Filters for Interpolating and Desampling," Handbook of1.
Digital Signal Processing, Academic Press, 1987.
P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase Networks, and2.
Applications: A Tutorial," Proc. of the IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990.

Advanced Design System 2011.01 - Numeric Components

578

 Hilbert

Description: Hilbert transform
Library: Numeric, Signal Processing
Class: SDFHilbert
C++ Code: See doc/sp_items/SDFHilbert.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Decimation decimation ratio 1 int [1, ∞)

DecimationPhase decimation phase 0 int [0, Decimation-1]

Interpolation interpolation ratio 1 int [1, ∞)

N number of taps in the Hilbert filter 64 int [1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

 Pin Outputs

Pin Name Description Signal Type

2 signalOut real

 Notes/Equations

This component approximates the Hilbert transform of the input signal by using an1.
FIR filter. The response is truncated symmetrically at − N/2 and N/2[1], which is
accurate enough for some applications. For high accuracy it may be necessary to use
the Parks-McClellan algorithm [2] to design a custom Hilbert transformer filter [1,3].
The Hilbert transform requires an infinite length set of FIR tap coefficients for2.
accurate representation. This model approximates the Hilbert transform with a finite
list of FIR taps. For practical accuracy, it is recommended N≥64.
See also: FIR (numeric).3.
For general information regarding numeric signal processing component signals, refer4.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.
T. W. Parks and J. H. McClellan, "Chebyshev Approximation for Nonrecursive Digital2.

Advanced Design System 2011.01 - Numeric Components

579

Filters With Linear Phase," IEEE Trans. on Circuit Theory, vol. 19, no. 2, pp. 189-194,
March 1972.
L. R. Rabiner, J. H. McClellan, and T. W. Parks, "FIR Digital Filter Design Techniques3.
Using Weighted Chebyshev Approximation," Proc. of the IEEE, vol. 63, no. 4, pp.
595-610, April 1975.

Advanced Design System 2011.01 - Numeric Components

580

 IIR

Description: IIR Filter
Library: Numeric, Signal Processing
Class: SDFIIR
C++ Code: See doc/sp_items/SDFIIR.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Gain gain 1 real (-∞, ∞)

Numerator numerator coefficients .5 .25 .1 real array

Denominator denominator coefficients 1 .5 .3 real array

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

 Pin Outputs

Pin Name Description Signal Type

2 signalOut real

 Notes/Equations

IIR implements an infinite impulse response filter of arbitrary order in a direct form II1.
as shown in IIR Filter Structure.
The parameters specify H(z), the Z-transform of an impulse response h(n). The2.
output of IIR is the convolution of the input with h(n).
The transfer function is of the form

where
Gain specifies G
Numerator and Denominator specify N(z -1) and D(z -1), respectively.
Both arrays start with the constant terms of the polynomial and decrease in powers
of z (increase in powers of 1/z). (The constant term of D is not omitted, as is
common in other programs that assume it has been normalized to unity.)

 IIR Filter Structure

Advanced Design System 2011.01 - Numeric Components

581

Numerator and Denominator array values can be specified directly or read from a file.3.
To load values for a file, replace the default values with the string <filename, for
example, "</filters/f1.txt", (use an absolute path name for the filename to allow
obtain expected results regardless of the directory where the simulation process
actually runs). For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.
The numerical finite precision noise increases with the filter order. To minimize this4.
distortion, expand the filter into a parallel or cascade form.
See also: Biquad (numeric), IIR_Cx (numeric), IIR_Fix (numeric).5.
For general information regarding numeric signal processing component signals, refer6.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

582

 IIR_Cx

Description: Complex IIR Filter
Library: Numeric, Signal Processing
Class: SDFIIR_Cx

 Parameters

Name Description Default Unit Type Range

Gain gain 1.0 complex

Numerator numerator coefficients (0.5, 0) (0.25, 0) (0.1, 0) complex array

Denominator denominator coefficients (1.0, 0) (0.5, 0) (0.3, 0) complex array

 Pin Inputs

Pin Name Description Signal Type

1 signalIn complex

 Pin Outputs

Pin Name Description Signal Type

2 signalOut complex

 Notes/Equations

IIR_Cx implements a complex infinite impulse response (IIR) filter of arbitrary order1.
in a direct form II realization.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.
The parameters specify H(z), the Z-transform of an impulse response h(n). The3.
output is the convolution of the input with h(n). The transfer function is of the form

where
Gain specifies G
Numerator and Denominator specify N(z -1) and D(z -1) , respectively.
Both arrays start with the constant terms of the polynomial and decrease in powers
of z (increase in powers of 1/z). (The constant term of D is not omitted, as is
common in other programs that assume it has been normalized to unity.)
The Numerator and Denominator array values may be specified directly or these may4.
be read from a file. To load array values for a file, replace the default values with the

Advanced Design System 2011.01 - Numeric Components

583

string <filename, for example, "</filters/f1.txt", (use an absolute path name for the
filename to allow obtain expected results regardless of the directory where the
simulation process actually runs).
For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
The numerical finite precision noise increases with the filter order. To minimize this5.
distortion, it is often desirable to expand the filter into a parallel or cascade form.
See also: Biquad (numeric), IIR (numeric), IIR_Fix (numeric).6.
For general information regarding numeric signal processing component signals, refer7.
to Numeric Signal Processing Components (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

584

 IIR_Fix

Description: Fixed IIR Filter
Library: Numeric, Signal Processing
Class: SDFIIR_Fix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFIIR_Fix.html under your installation directory.

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

Gain gain 1 real (-∞,
∞)

Numerator numerator coefficients .5 .25 .1 real
array

Denominator denominator coefficients 1 .5 .3 real
array

CoefPrecision precision of coefficients 2.14 precision

UseArrivingPrecision use precision of arriving data: NO, YES NO enum

InputPrecision precision of input signal, in bits (used only if
UseArrivingPrecision is set to NO)

2.14 precision

AccumPrecision precision of state, in bits 2.14 precision

StatePrecision precision of state, in bits 2.14 precision

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Inputs

Pin Name Description Signal Type

1 signalIn fix

 Pin Outputs

Pin Name Description Signal Type

2 signalOut fix

 Notes/Equations

IIR_Fix implements an infinite impulse response filter in a direct form II realization1.
using fixed point arithmetic.

Advanced Design System 2011.01 - Numeric Components

585

The transfer function is of the form

where
N() and D() are polynomials
Gain specifies G
Numerator and Denominator specify N() and D(), respectively.
Both arrays start with the constant terms of the polynomial and decrease in powers
of z (increase in powers of 1/z). The coefficients are rounded to the precision given
by CoefPrecision. (The constant term of D is not omitted, as is common in other
programs that assume that it has been normalized to unity. Also, before the
numerator and denominator coefficients are quantized, these are rescaled so that the
leading denominator coefficient is unity. The gain is multiplied through the numerator
coefficients as well.)
The numerical finite precision noise increases with the filter order. To minimize this2.
distortion, expand the filter into a parallel or cascade form.
Quantization is performed in several places. First, the coefficients are quantized3.
(rounded) to CoefPrecision. This is done after the coefficients have been rescaled to
make the initial denominator coefficient unity. The input is optionally quantized
(rounded) to precision specified by InputPrecision. The multiplication of the state by
the coefficients preserves full precision, but the result is quantized to AccumPrecision
after being added to other products. The state variables are stored with the precision
given by StatePrecision. Before being sent out, the output values are quantized
(rounded) to OutputPrecision.
The Numerator and Denominator array values may be specified directly or these may4.
be read from a file. To load array values for a file, replace the default values with the
string <filename, for example, "</filters/f1.txt", (use an absolute path name for the
filename to allow obtain expected results regardless of the directory where the
simulation process actually runs).
For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If the fixed-point operations cannot fit into the precision specified, overflow occurs5.
with the overflow characteristic specified by OverflowHandler. If ReportOverflow =
REPORT, after the simulation has finished the number of overflow errors (if any) will
be reported. RoundFix identifies whether fixed-point computations are truncate or
round method. If UseArrivingPrecision = NO, the input is cast to the precision
specified by InputPrecision. TapPrecision indicates how many bits are used to
represent the filter taps.
For details on these fixed-point parameters refer to Parameters for Fixed-Point
Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
If UseArrivingPrecision = YES, then components that send a NULL particle on their6.
first firing should not be connected at the input of this component. For example,
when a Delay component is connected at its input, such a NULL particle has a
precision of 1.0 and the output value will be forced to 0.
See also: Biquad (numeric), IIR (numeric), IIR_Cx (numeric).7.
For general information regarding numeric signal processing component signals, refer8.
to Numeric Signal Processing Components (numeric).

 References

Advanced Design System 2011.01 - Numeric Components

586

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

587

 Lattice

Description: Lattice Filter
Library: Numeric, Signal Processing
Class: SDFLattice
C++ Code: See doc/sp_items/SDFLattice.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

ReflectionCoefs reflection or PARCOR
coefficients

0.804534 -0.820577 0.521934 -
0.205

 real
array

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

 Pin Outputs

Pin Name Description Signal Type

2 signalOut real

 Notes/Equations

Lattice implements a Lattice filter. The structure of this filter is shown in Lattice Filter1.
Structure. The reflection (PARCOR) coefficients should be specified left to right, K 1 to

K n , as shown.

Using the same coefficients in the RLattice component will result in the inverse
transfer function.
The default reflection coefficients correspond to the optimal linear predictor for an AR2.
process generated by filtering white noise with the following filter:

Because this filter is minimum phase, the transfer function of the lattice filter is H -1

(z).

 Lattice Filter Structure

Advanced Design System 2011.01 - Numeric Components

588

To read other reflection coefficients from a file, replace the default coefficients with3.
<filename>. Use the full path of the filename so that the simulation will work
correctly without regard to the directory from which it runs. For details on using
arrays of data for parameter values, refer to Understanding Parameters (ptolemy) in
the ADS Ptolemy Simulation (ptolemy) documentation.
The definition of reflection coefficients varies in the literature. The reflection4.
coefficients in [2] and [3] are the negative of the ones used by Lattice, which
correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.
The signs of the coefficients used in Lattice are appropriate for values given by the
LevDur and Burg components.
See also: BlockLattice (numeric), BlockRLattice (numeric), RLattice (numeric).5.
For general information regarding numeric signal processing component signals, refer6.
to Numeric Signal Processing Components (numeric).

 References

J. Makhoul, "Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580, Apr.1.
1975.
S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,2.
Englewood Cliffs, NJ, 1988.
S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.3.

Advanced Design System 2011.01 - Numeric Components

589

 LevDur

Description: FIR and lattice linear predictor coefficients
Library: Numeric, Signal Processing
Class: SDFLevDur
C++ Code: See doc/sp_items/SDFLevDur.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Order order of recursion 8 int (0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 autocor Autocorrelation estimate real

 Pin Outputs

Pin Name Description Signal Type

2 lp FIR linear predictor coefficients output. real

3 refl Lattice predictor coefficients output. real

4 errPower Prediction error power. real

 Notes/Equations

LevDur takes as inputs an autocorrelation function, or estimates produced by the1.
Autocor component, and uses the Levinson-Durbin algorithm to compute both
reflection coefficients and FIR linear predictor coefficients.
If the Autocor component is set so that its Unbiased parameter is 0, then the2.
combined effect of Autocor and LevDur is called the autocorrelation algorithm. Order
should be the same as the Autocor NoLags parameter.
On the errPower output, a sequence of Order+1 samples gives the prediction error3.
power for each predictor order from 0 to Order. The first sample, which corresponds
to the 0th-order predictor, is an estimate of the power of the input process. (For
signals without noise, the errPower output can sometimes end up being a small
negative number.)
The lp output gives the coefficients of an FIR filter that performs linear prediction for4.
the input process. This set of coefficients is suitable for directly feeding the BlockFIR
filter component. The number of coefficients produced is equal to Order.
The refl output is the reflection coefficients, suitable for feeding directly to the5.
BlockLattice component, which will then generate the forward and backward
prediction error. The number of coefficients produced is equal to Order.
The definition of reflection coefficients varies in the literature. The reflection6.
coefficients in [2] and [3] are the negative of the ones generated by LevDur, which

Advanced Design System 2011.01 - Numeric Components

590

correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.
See also: Autocor (numeric), BlockFIR (numeric), BlockLattice (numeric).7.
For general information regarding numeric signal processing component signals, refer8.
to Numeric Signal Processing Components (numeric).

 References

J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, vol. 63, pp. 561-580,1.
Apr. 1975.
S. M. Kay, Modern Spectral Estimation: Theory & Application , Prentice-Hall,2.
Englewood Cliffs, NJ, 1988
S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.3.

Advanced Design System 2011.01 - Numeric Components

591

 LMS

Description: LMS adaptive filter
Library: Numeric, Signal Processing
Class: SDFLMS
C++ Code: See doc/sp_items/SDFLMS.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Taps filter tap values -.040609 -.001628 .17853 .37665
.37665 .17853 -.001628 -.040609

 real
array

Decimation decimation ratio 1 int [1, ∞)

DecimationPhase decimation phase 0 int [0,
Decimation-1]

StepSize adaptation step size 0.01 real (0, ∞)

ErrorDelay update loop delay 1 int [1, ∞)

SaveTapsFile filename in which to save
final tap values

 string

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

2 error real

 Pin Outputs

Pin Name Description Signal Type

3 signalOut real

 Notes/Equations

LMS is an adaptive filter using the least-mean square algorithm. The initial filter1.
coefficients are given by the Taps parameter. The default initial coefficients give an
8th-order, linear phase lowpass filter. To read initial coefficients from a file, replace
the default coefficients with <filename>, preferably specifying a complete path. For
details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
LMS supports decimation, but not interpolation.
When used correctly, this LMS adaptive filter will adapt to try to minimize the mean-2.
squared error of the signal at its error input [1]. The output of the filter should be
compared to (subtracted from) some reference signal to produce an error signal.
That error signal should be fed back to the error input. The ErrorDelay parameter
must equal the total number of delays in the path from the output of the filter back

Advanced Design System 2011.01 - Numeric Components

592

to the error input. This ensures correct alignment of the adaptation algorithm. The
number of delays must be greater than 0 or the simulation will deadlock.
The adaptation algorithm is the well-known LMS, or stochastic-gradient, algorithm.
If the SaveTapsFile string is non-null, a file will be created with the name given by3.
that string, and the final tap values will be stored there after the run has completed.
See also: LMS_Cx (numeric), LMS_Leak (numeric), LMS_OscDet (numeric).4.
For general information regarding numeric signal processing component signals, refer5.
to Numeric Signal Processing Components (numeric).

 References

S. Haykin, Adaptive Filter Theory, Prentice Hall: Englewood Cliffs, NJ. 1991. 2nd ed.1.

Advanced Design System 2011.01 - Numeric Components

593

 LMS_Cx

Description: Complex LMS adaptive filter
Library: Numeric, Signal Processing
Class: SDFLMS_Cx
C++ Code: See doc/sp_items/SDFLMS_Cx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Taps filter tap values (-.040609,0.0) (-.001628,0.0)
(.17853,0.0) (.37665,0.0)(.37665,0.0)
(.17853,0.0) (-.001628,0.0) (-
.040609,0.0)

 complex
array

Decimation decimation ratio 1 int [1, ∞)

DecimationPhase decimation phase 0 int [0,
Decimation-
1]

StepSize adaptation step
size

0.01 real (0, ∞)

ErrorDelay update loop delay 1 int [1, ∞)

SaveTapsFile filename in which
to save final tap
values

 string

 Pin Inputs

Pin Name Description Signal Type

1 signalIn complex

2 error complex

 Pin Outputs

Pin Name Description Signal Type

3 signalOut complex

 Notes/Equations

LMS_Cx implements an adaptive filter using the least-mean square algorithm. The1.
initial filter coefficients are given by the Taps parameter. The default initial
coefficients give an 8th-order, linear phase lowpass filter. To read initial coefficients
from a file, replace the default coefficients with <filename>, preferably specifying a
complete path. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Advanced Design System 2011.01 - Numeric Components

594

LMS_Cx supports decimation, but not interpolation.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.
When used correctly, this LMS adaptive filter will adapt to try to minimize the mean-3.
squared error of the signal at its error input [1]. The output of the filter should be
compared (subtracted from) some reference signal to produce an error signal. That
error signal should be fed back to the error input. The ErrorDelay parameter must
equal the total number of delays in the path from the output of the filter back to the
error input. This ensures correct alignment of the adaptation algorithm. The number
of delays must be greater than 0 or the simulation will deadlock.
The adaptation algorithm is the well-known LMS, or stochastic-gradient algorithm.
If the SaveTapsFile string is non-null, a file will be created with the name given by4.
that string, and the final tap values will be stored there after the run has completed.
See also: LMS (numeric), LMS_Leak (numeric), LMS_OscDet (numeric).5.
For general information regarding numeric signal processing component signals, refer6.
to Numeric Signal Processing Components (numeric).

 References

S. Haykin, Adaptive Filter Theory, Prentice Hall: Englewood Cliffs, NJ. 1991. 2nd ed.1.

Advanced Design System 2011.01 - Numeric Components

595

 LMS_Leak

Description: LMS Adaptive Filter with Input Step Size
Library: Numeric, Signal Processing
Class: SDFLMS_Leak
C++ Code: See doc/sp_items/SDFLMS_Leak.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Taps filter tap values -.040609 -.001628 .17853 .37665
.37665 .17853 -.001628 -.040609

 real
array

Decimation decimation ratio 1 int [1, ∞)

DecimationPhase decimation phase 0 int [0,
Decimation-1]

ErrorDelay update loop delay 1 int [1, ∞)

SaveTapsFile filename in which to save
final tap values

 string

Mu coefficient update leak
factor

0.0 real (∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

2 error real

3 step Step-size for LMS algorithm. real

 Pin Outputs

Pin Name Description Signal Type

4 signalOut real

 Notes/Equations

LMS_Leak is an LMS adaptive filter in which the step size is input (to the step input)1.
every iteration. In addition, the Mu parameter specifies a leakage factor in the
updates of the filter coefficients.
If two identical LMS_Leak filters are used as an adaptive predictive coder and2.
decoder then, with Mu nearly equal to but greater than 0.0, the effects of channel
errors between the coder and decoder will decay rather than accumulate. As Mu
increases, the effects of channel errors decay more quickly, but the size of the error
input increases also. See page 54 of Reference [1].
ErrorDelay must equal the total number of delays in the path from the output of the3.
filter back to the error input. This ensures correct alignment of the adaptation

Advanced Design System 2011.01 - Numeric Components

596

algorithm. The number of delays must be >0 or the simulation will deadlock.
If the SaveTapeFile string is non-null, a file will be created with the name given by4.
that string, and the final tape values will be stored there after the run has completed.
See also: LMS (numeric), LMS_Cx (numeric), LMS_OscDet (numeric).5.
For general information regarding numeric signal processing component signals, refer6.
to Numeric Signal Processing Components (numeric).

 References

W. Honig and D. G. Messerschmitt, Adaptive Filters, Kluwer Academic Publishers,1.
Norwood MA, 1985.

Advanced Design System 2011.01 - Numeric Components

597

 LMS_OscDet

Description: LMS adaptive filter with sinusoid detection
Library: Numeric, Signal Processing
Class: SDFLMS_OscDet
C++ Code

 Parameters

Name Description Default Unit Type Range

StepSize adaptation step size 0.01 real (0, ∞)

ErrorDelay update loop delay 1 int [1, ∞)

SaveTapsFile filename in which to save final tap values string

InitialOmega initial estimated angle, in radians pi/4 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

2 error real

 Pin Outputs

Pin Name Description Signal
Type

3 signalOut real

4 cosOmega Current estimated value of the cosine of the frequency of the
dominate\nsinusoidal component of the input signal.

real

 Notes/Equations

LMS_OscDet tries to lock onto the strongest sinusoidal component in the input signal,1.
and outputs the current estimate of the cosine of the frequency of the strongest
component. LMS_OscDet is a 3-tap least-mean square filter whose first and third
coefficients are fixed while the second coefficient is adapted. It is a normalized
version of the Direct Adaptive Frequency Estimation Technique.
The initial taps of this LMS filter are 0.5, −1, 0.5. The second tap is adapted while the2.
others are held fixed. The second tap is equal to − a 1 ; its adaptation has the form

where

and y[n] is the output of this filter, which can be used as the error signal.

Advanced Design System 2011.01 - Numeric Components

598

The step size term µ is fixed by the value of the StepSize parameter. You can
effectively vary the step size by attenuating the error term as

assuming that k = 1, 2, 3, and so forth. When the error becomes relatively small,
this filter gives an estimate of the strongest sinusoidal component:

The taps here are scaled by one-half from those of other implementations; therefore,
the output of the filter is also scaled by one-half. To compensate for this scaling, µ is
multiplied by 2 relative to other implementations with full scale taps.
LMS_OscDet outputs the current value of a1 on the cosOmega output port. The initial3.

value is a1 = 1 (0 frequency) so the initial value of the second tap is −1.

ErrorDelay must equal the total number of delays in the path from the output of the4.
filter back to the error input. This ensures correct alignment of the adaptation
algorithm. The number of delays must be >0 or the simulation will deadlock.
If the SaveTapeFile string is non-null, a file will be created with the name given by5.
that string, and the final tape values will be stored there after the run has completed.
See also: LMS (numeric), LMS_Cx (numeric), and LMS_Leak (numeric).6.
For general information regarding numeric signal processing component signals, refer7.
to Numeric Signal Processing Components (numeric).

Advanced Design System 2011.01 - Numeric Components

599

 PattMatch

Description: Cross-correlation with template input
Library: Numeric, Signal Processing
Class: SDFPattMatch
C++ Code: See doc/sp_items/SDFPattMatch.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

TempSize number of samples in template 32 int (0, ∞)

WinSize number of samples in search template 176 int [TempSize, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 templ template input real

2 window window input real

 Pin Outputs

Pin Name Description Signal Type

3 index index output int

4 values cross-correlation output real

 Notes/Equations

PattMatch accepts a template and a search window and tries to find the position in1.
the search window where the template matches best. Every time the component
fires, it reads TempSize samples from its templ input and WinSize samples from its
window input. At the same time, it writes one sample to its index output and
(WinSize − TempSize + 1) samples to its values output.
The algorithm for finding the best template match position starts by placing the
template at the left end of the window (first samples of template and window are
aligned) and calculating the cross-correlation between them. Then the template is
shifted across the window one sample at a time and the cross-correlation is
computed at each step until the template reaches the right end of the window (last
samples of template and window are aligned). The cross-correlation values are
output on the values output. The index output is the value of the shift (in number of
samples) that gives the largest cross-correlation.
The cross-correlation values are normalized against the energy of the window under2.
the template:

Advanced Design System 2011.01 - Numeric Components

600

where T is the template, W is the window, n is the index value and T size equals

TempSize.
Note that if the template is identical to a certain segment of the window, then the
cross-correlation value C(n) for that segment will be 1.0. Therefore, the index with
the highest cross-correlation value may not be the best match if that value is greater
than 1.0.
For general information regarding numeric signal processing component signals, refer3.
to Numeric Signal Processing Components (numeric).
To access the example that shows how this component is used: from the Main4.
window, choose File > Open > Example > PtolemyDocExamples >
Numeric_Signal_Processing_wrk; from the Schematic window, choose File >
Open, PattMatch_example.

Advanced Design System 2011.01 - Numeric Components

601

 RLattice

Description: Recursive Lattice Filter
Library: Numeric, Signal Processing
Class: SDFRLattice
C++ Code: See doc/sp_items/SDFRLattice.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

ReflectionCoefs reflection or PARCOR
coefficients

0.804534 -0.820577 0.521934 -
0.205

 real
array

 Pin Inputs

Pin Name Description Signal Type

1 signalIn real

 Pin Outputs

Pin Name Description Signal Type

2 signalOut real

 Notes/Equations

RLattice implements a recursive lattice filter (also referred to as the Lattice inverse1.
filter). The structure of this filter is:

 RLattice Filter Structure

where Z -1 are unit delays and + are adders. The reflection (or PARCOR) coefficients
should be entered from K 1 to K n , left to right, where K 1 through K n are specified

as above.

Advanced Design System 2011.01 - Numeric Components

602

Using the same coefficients in the Lattice component will result in the inverse transfer2.
function.
The default reflection coefficients correspond to the optimal linear predictor for an AR3.
process generated by filtering white noise with the following filter:

To read other reflection coefficients from a file, replace the default coefficients with4.
<filename>. Use the full path of the filename so that the simulation will work
correctly without regard to the directory from which it runs. For details on using
arrays of data for parameter values, refer to Understanding Parameters (ptolemy) in
the ADS Ptolemy Simulation (ptolemy) documentation.
The definition of reflection coefficients varies in the literature. The reflection5.
coefficients in References [2] and [3] are the negative of the ones used by RLattice,
which correspond to the definition in most other texts, and to the definition of partial-
correlation (PARCOR) coefficients in the statistics literature.
The signs of the coefficients used in RLattice are appropriate for values given by the
LevDur and Burg components.
See also: BlockLattice (numeric), BlockRLattice (numeric), IIR (numeric), Lattice6.
(numeric).
For general information regarding numeric signal processing component signals, refer7.
to Numeric Signal Processing Components (numeric).

 References

J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, Vol. 63, pp. 561-580,1.
Apr. 1975.
S. M. Kay, Modern Spectral Estimation: Theory & Application, Prentice-Hall,2.
Englewood Cliffs, NJ, 1988.
S. Haykin, Modern Filters, MacMillan Publishing Company, New York, 1989.3.

Advanced Design System 2011.01 - Numeric Components

603

 SlidWinAvg

Description: Sliding-Window Average
Library: Numeric, Signal Processing
Class: SDFSlidWinAvg
C++ Code: See doc/sp_items/SDFSlidWinAvg.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

WindowSize size of sliding window 3 int (1, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

SlidWinAvg outputs the average of the last WindowSize input values.1.
For the first (WindowSize −1) output samples for which less than WindowSize input
samples are available, the missing values are assumed to be 0.
This component is equivalent to an FIR filter with WidowSize taps all equal to
1/WindowSize.

Advanced Design System 2011.01 - Numeric Components

604

 Numeric Sources
Bits (numeric)
ComplexExp (numeric)
Const (numeric)
ConstCx (numeric)
ConstFix (numeric)
ConstInt (numeric)
Cx M (numeric)
DataPattern (numeric)
DiagonalCx M (numeric)
DiagonalFix M (numeric)
DiagonalInt M (numeric)
Diagonal M (numeric)
Fix M (numeric)
Float M (numeric)
IdentityCx M (numeric)
IdentityFix M (numeric)
IdentityInt M (numeric)
Identity M (numeric)
IID Gaussian (numeric)
IID Uniform (numeric)
ImpulseFloat (numeric)
Int M (numeric)
NumericExpression (numeric)
NumericSource (numeric)
RampFix (numeric)
RampFloat (numeric)
RampInt (numeric)
ReadFile (numeric)
ReadFilePreProc (numeric)
Rect (numeric)
RectCx (numeric)
RectCxDoppler (numeric)
RectFix (numeric)
SineGen (numeric)
WaveForm (numeric)
WaveFormCx (numeric)
Window (numeric)

The Numeric Sources component library contains scalar and matrix signal sources for
floating-point (real), fixed-point, complex and integer data.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components operate with fixed-point numbers. These components use one or more

Advanced Design System 2011.01 - Numeric Components

605

parameters that define the characteristics of the fixed-point processing. These parameters
include: OverflowHandler, OutputPrecision, RoundFix, ReportOverflow, and others. For
details on the use of these parameters for fixed-point components a refer to Parameters
for Fixed-Point Components (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation. The arithmetic used by these components is two's complement.
Therefore, all precision values must specify at least one bit to the left of the decimal point
(used as sign bit).

Advanced Design System 2011.01 - Numeric Components

606

 Bits

Description: Binary random bits output
Library: Numeric, Sources
Class: SDFBits

 Parameters

Name Description Default Symbol Unit Type Range

Type type of bit sequence, random or pseudo random:
Random, Prbs

Random enum

ProbOfZero probability of bit value being zero (used when
Type=Random)

0.5 real [0, 1]

LFSR_Length Linear Feedback Shift Register length (used when
Type=Prbs)

12 L int [2, 31]

LFSR_InitState Linear Feedback Shift Register initial state (used
when Type=Prbs)

1 int [1, 2 L -
1]

 Pin Outputs

Pin Name Description Signal Type

1 output output bit stream int

 Notes/Equations

Note
Due to a corrective change made to this component in the ADS 2008 release, its output bit sequence in
ADS 2008 (and later releases) differs from the one generated in previous releases when Type=Prbs. In
ADS 2008 (and later releases) the first output bit (in the period of 2L − 1 bits) is what used to be the last
output bit (in the period of 2L − 1 bits) in releases prior to ADS 2008.

Bits generates random or pseudo-random binary bit sequences.1.
When Type = Random, Bits generates a random output bit sequence for which the2.
probability of each bit being 0 is equal to ProbOfZero. If ProbOfZero is set to a value
less than 0 it is considered to be equal to 0; if ProbOfZero is set to a value greater
than 1 it is considered to be equal to 1.
(The LFSR_Length and LFSR_InitState parameters are ignored in this mode.)
The random bit sequence is generated by making use of the random number
generator. Therefore, the bit pattern will be different for each instance of the Bits
component. In addition, if other components that use the random number generator
(for example, Noise, IID_Gaussian, RES with RTemp > −273.15) are added or
removed from a design the output bit sequences from the Bits components will
change.
The output bit sequence is also dependent on the value of the DefaultSeed parameter

Advanced Design System 2011.01 - Numeric Components

607

in the data flow controller (DF), which provides the initial seed for the random
number generator.

When DefaultSeed = 0, the initial seed value is obtained from the system time
so the output bit sequence generated for each simulation will be different even if
nothing else changes on the design.
When DefaultSeed > 0, the output bit sequence generated for each simulation,
though statistically random, has the same initial seed starting condition and
therefore results in reproducible simulations.

When Type = Prbs, the output bit sequence is pseudo-random and is generated by3.
using an LFSR (linear feedback shift register).
The LFSR_Length parameter sets the LFSR length that, in turn, defines the period of
the sequence (2L − 1). If LFSR_Length is outside its valid range [2, 31], it is reset to
its default value of 12.
The LFSR_InitState parameter sets the initial state of the LFSR. If LFSR_InitState is
outside its valid range [1, 2L − 1], it is reset to its default value of 1. The ProbOfZero
parameter is ignored in this mode of operation. Since the random number generator
is not used in this case, the output bit sequence does not depend on the DefaultSeed
parameter of the DF controller.
Two instances of the Bits source with Type set to Prbs and the same values for the
LFSR_Length and LFSR_InitState parameters will generate the exact same output no
matter what the DefaultSeed value is or if the rest of the design is modified.
To get two or more uncorrelated pseudo-random bit sequences, place two or more
Bits components, set their Type parameters to Prbs, their LFSR_Length parameters
to the same value, and their LFSR_InitState parameters to different values. The
maximum number of uncorrelated sequences one can generate with LFSRs of length
L is 2L − 1.
See also: LFSR (numeric).4.
For information regarding numeric source signals, refer to Numeric Sources5.
(numeric).

Advanced Design System 2011.01 - Numeric Components

608

 ComplexExp

Description: Complex exponential source
Library: Numeric, Sources
Class: SDFComplexExp
Derived From: SineGen

 Parameters

Name Description Default Unit Type Range

RadiansPerSample radians per sample pi/50 real (-∞, ∞)

InitialRadians initial phase, in radians 0 real (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output output signal complex

 Notes/Equations

ComplexExp generates the sequence of numbers given by1.
cos(ω × n + φ) + j × sin(ω × n + φ), n = 0, 1, ... ,
where ω equals RadiansPerSample and φ equals InitialRadians.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

609

 Const

Description: Constant output
Library: Numeric, Sources
Class: SDFConst
C++ Code: See doc/sp_items/SDFConst.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Level value 0.0 real (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

Const outputs a constant signal with a value given by the Level parameter (default1.
0.0).
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

610

 ConstCx

Description: Complex constant output
Library: Numeric, Sources
Class: SDFConstCx
C++ Code: See doc/sp_items/SDFConstCx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Real real part 0.0 real (-∞, ∞)

Imag imaginary part 0.0 real (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output complex

 Notes/Equations

ConstCx outputs a complex constant signal with the real part given by the Real1.
parameter (default 0.0) and the imaginary part given by the Imag parameter (default
0.0).
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

611

 ConstFix

Description: Fixed-Point Constant Output
Library: Numeric, Sources
Class: SDFConstFix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFConstFix.html under your installation directory.

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

Level constant value 0.0 fix (-∞,
∞)

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Outputs

Pin Name Description Signal Type

1 output fix

 Notes/Equations

ConstFix outputs a fixed-point constant signal with a value given by the Level1.
parameter (default 0.0).
The output precision is specified using an l.r format: l is the number of bits to the left2.
of the decimal place (including the sign bit); r is the number of bits to the right of the
decimal place. For example, the precision 2.22 would represent a 24-bit fixed-point
number with 1 sign bit, 1 integer bit, and 22 fractional bits.
This component uses two's-complement arithmetic; the values of the OutputPrecision3.
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).
For information regarding numeric source signals, refer to Numeric Sources4.
(numeric).

Advanced Design System 2011.01 - Numeric Components

612

 ConstInt

Description: Integer constant output
Library: Numeric, Sources
Class: SDFConstInt
C++ Code: See doc/sp_items/SDFConstInt.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Level constant value 0 int (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output int

 Notes/Equations

ConstInt outputs a constant signal with a value given by the Level parameter (default1.
0).
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

613

 Cx_M

Description: Complex Matrix Output
Library: Numeric, Sources
Class: SDFCx_M
Derived From: MatrixConstant

 Parameters

Name Description Default Type Range

NumRows the number of rows in the matrix 2 int [1, ∞)

NumCols the number of columns in the matrix 2 int [1, ∞)

ComplexMatrixContents complex valued elements of output matrix 1 j (-1) (-
j)

complex array

 Pin Outputs

Pin Name Description Signal Type

1 output complex matrix

 Notes/Equations

Cx_M produces a matrix with complex entries. Entries are read from the1.
ComplexMatrixContents array parameter in rasterized order; for example, for an
M × N matrix, the first row is filled from left to right using the first N values from the
array.
The ComplexMatrixContents value may be specified directly or these may be read
from a file. To use data from a file, replace the default coefficients with the string,
<filename.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
Value Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

614

 DataPattern

Description: Patterned data source
Library: Numeric, Sources
Class: SDFDataPattern

 Parameters

Name Description Default Unit Type Range

DataPattern data pattern: PN9, PN15, FIX4, _4_1_4_0, _8_1_8_0, _16_1_16_0,
_32_1_32_0, _64_1_64_0

PN9 enum

 Pin Outputs

Pin Name Description Signal Type

1 output patterned data output int

 Notes/Equations

This model is used to generate one of eight patterned bit streams.1.
For the DataPattern parameter:2.

if PN9 is selected, a 511-bit pseudo-random test pattern is generated according
to CCITT Recommendation O.153
if PN15 is selected, a 32767-bit pseudo-random test pattern is generated
according to CCITT Recommendation O.151
if FIX4 is selected, a zero-stream is generated
if x_1_x_0 is selected, where x equals 4, 8, 16, 32, or 64, a periodic bit stream
is generated, with the period being 2 × x. In one period, the first x bits are 1s
and the second x bits are 0s.

For information regarding numeric source signals, refer to the Numeric Sources3.
(numeric).

 References

CCITT, Recommendation O.151(10/92).1.
CCITT, Recommendation O.153(10/92).2.

Advanced Design System 2011.01 - Numeric Components

615

 DiagonalCx_M

Description: Complex Diagonal Matrix Output
Library: Numeric, Sources
Class: SDFDiagonalCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

DiagonalElements complex diagonal elements of output matrix 1 j complex array

 Pin Outputs

Pin Name Description Signal Type

1 output complex matrix

 Notes/Equations

DiagonalCx_M outputs a diagonal matrix of size (RowsCols × RowsCols) with the1.
diagonal elements given in the DiagonalElements parameter. All diagonal elements
are complex numbers.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

616

 DiagonalFix_M

Description: Fixed-Point Diagonal Matrix Output
Library: Numeric, Sources
Class: SDFDiagonalFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

OutputPrecision precision of output in bits and accumulation 2.14 string

DiagonalElements fixed-point diagonal elements of output matrix 1 -2 fix
array

 Pin Outputs

Pin Name Description Signal Type

1 output fix matrix

 Notes/Equations

DiagonalFix_M outputs a diagonal matrix of size (RowsCols × RowsCols) with the1.
diagonal elements given in the DiagonalElements parameter with the specified
precision.
This component uses two's-complement arithmetic; the values of the OutputPrecision2.
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used as sign bit).
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

617

 DiagonalInt_M

Description: Integer Diagonal Matrix Output
Library: Numeric, Sources
Class: SDFDiagonalInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

DiagonalElements integer diagonal elements of output matrix 1 2 int
array

 Pin Outputs

Pin Name Description Signal Type

1 output int matrix

 Notes/Equations

DiagonalInt_M outputs a diagonal matrix of size (RowsCols × RowsCols) with the1.
diagonal elements given in the DiagonalElements parameter. All diagonal elements
are integer numbers.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

618

 Diagonal_M

Description: Diagonal Matrix Output
Library: Numeric, Sources
Class: SDFDiagonal_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

DiagonalElements diagonal elements of output matrix 1.0 2.0 real
array

 Pin Outputs

Pin Name Description Signal Type

1 output real matrix

 Notes/Equations

Diagonal_M outputs a diagonal matrix of size (RowsCols × RowsCols) with the1.
diagonal elements given in the DiagonalElements parameter. All diagonal elements
are floating-point (real) numbers.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

619

 Fix_M

Description: Fixed-Point Matrix Output
Library: Numeric, Sources
Class: SDFFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

NumRows number of rows in output matrix 2 int [1, ∞)

NumCols number of columns in output matrix 2 int [1, ∞)

FixMatrixContents fixed-point elements of output matrix 1 -2 2 -2 fix array

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Outputs

Pin Name Description Signal Type

1 output fix matrix

 Notes/Equations

Fix_M generates a matrix with fixed-point entries. Entries are read from the1.
FixMatrixContents array parameter in rasterized order; for example, for an M × N
matrix, the first row is filled left to right using the first N values from the array. All
entries have the same precision, as specified by OutputPrecision.
The FixMatrixContents value may be specified directly or these may be read from a2.
file. To use data from a file, replace the default coefficients with the string, <filename
. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
This component uses two's-complement arithmetic; the values of the OutputPrecision3.
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).
For information regarding numeric source signals, refer to Numeric Sources4.
(numeric).

Advanced Design System 2011.01 - Numeric Components

620

 Float_M

Description: Matrix Output
Library: Numeric, Sources
Class: SDFFloat_M
Derived From: MatrixConstant

 Parameters

Name Description Default Type Range

NumRows the number of rows in the matrix 2 int [1, ∞)

NumCols the number of columns in the matrix 2 int [1, ∞)

FloatMatrixContents floating-point(real) elements of matrix 1.0 -2.0 2.0 -2.0 real
array

 Pin Outputs

Pin Name Description Signal Type

1 output real matrix

 Notes/Equations

Float_M produces a matrix with floating-point (real) entries. Entries are read from the1.
FloatMatrixContents array parameter in rasterized order; for example, for an M × N
matrix, the first row is filled from left to right using the first N values from the array.
The FloatMatrixContents value may be specified directly or these may be read from a2.
file. To use data from a file, replace the default coefficients with the string, <filename
. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

621

 IdentityCx_M

Description: Complex Identity Matrix Output
Library: Numeric, Sources
Class: SDFIdentityCx_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output complex matrix

 Notes/Equations

IdentityCx_M outputs an identity matrix of the specified size.1.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

622

 IdentityFix_M

Description: Fixed-Point Identity Matrix Output
Library: Numeric, Sources
Class: SDFIdentityFix_M
Derived From: SDFFix

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate, zero_saturate,
warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT, REPORT REPORT enum

RoundFix fixed-point computations, assignments, and data type conversions
option: TRUNCATE, ROUND

TRUNCATE enum

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

OutputPrecision precision of output in bits and accumulation 2.14 string

 Pin Outputs

Pin Name Description Signal Type

1 output fix matrix

 Notes/Equations

IdentityFix_M outputs an identity matrix of the specified size with the specified1.
precision.
This component uses two's-complement arithmetic; the values of the OutputPrecision2.
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

623

 IdentityInt_M

Description: Integer Identity Matrix Output
Library: Numeric, Sources
Class: SDFIdentityInt_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output int matrix

 Notes/Equations

IdentityInt_M outputs an identity matrix of the specified size.1.

Advanced Design System 2011.01 - Numeric Components

624

 Identity_M

Description: Identity Matrix Output
Library: Numeric, Sources
Class: SDFIdentity_M
Derived From: MatrixBase

 Parameters

Name Description Default Type Range

RowsCols number of rows and columns in output square matrix 2 int [1, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output real matrix

 Notes/Equations

Identity_M outputs an identity matrix of the specified size.1.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

625

 IID_Gaussian

Description: IID Gaussian Distributed Noise Output
Library: Numeric, Sources
Class: SDFIID_Gaussian
C++ Code: See doc/sp_items/SDFIID_Gaussian.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Mean mean of distribution 0.0 real (-∞, ∞)

Variance variance of distribution 1.0 real (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

IID_Gaussian generates an identically independently distributed white Gaussian1.
pseudo-random process with mean (default 0) and variance (default 1) specified by
the Mean and Variance parameters.
The noise is random for each IID_Gaussian instance. The noise is dependent on the2.
value of the DefaultSeed in the data flow controller (DF). When DefaultSeed = 0, the
noise generated for each simulation is different. When DefaultSeed > 0, the noise
generated for each simulation, though random, has the same initial seed starting
condition and thus results in reproducible simulations.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

626

 IID_Uniform

Description: IID Uniform Distributed Noise Output
Library: Numeric, Sources
Class: SDFIID_Uniform
C++ Code: See doc/sp_items/SDFIID_Uniform.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Lower lower limit 0.0 real (-∞, ∞)

Upper upper limit 1.0 real [Lower, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

IID_Uniform generates an identically independently distributed uniformly distributed1.
pseudo-random process. The output is uniformly distributed between Lower (default
0.0) and Upper (default 1.0) limits.
Noise is random for each IID_Uniform instance and is dependent on the value of the2.
DefaultSeed in the data flow controller (DF). When DefaultSeed = 0, then the noise
generated for each simulation is different; when DefaultSeed > 0, then the noise
generated for each simulation, though random, has the same initial seed starting
condition and thus results in reproducible simulations.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

627

 ImpulseFloat

Description: Impulse output
Library: Numeric, Sources
Class: SDFImpulseFloat
C++ Code: See doc/sp_items/SDFImpulseFloat.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Level height of impulse 1.0 real (-∞, ∞)

Period if greater than zero, period of impulse train 0 int [0, ∞)

Delay output delay 0 int [0, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

ImpulseFloat generates a single impulse or an impulse train, with an amplitude1.
specified by Level (default 0.0). If Period (default 0) is equal to 0, then only a single
impulse is generated; otherwise Period specifies the period of the impulse train. The
impulse or impulse train is delayed by the amount specified by Delay.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

628

 Int_M

Description: Integer Matrix Output
Library: Numeric, Sources
Class: SDFInt_M
Derived From: MatrixConstant

 Parameters

Name Description Default Type Range

NumRows the number of rows in the matrix 2 int [1, ∞)

NumCols the number of columns in the
matrix

2 int [1, ∞)

IntMatrixContents integer elements of output matrix 1 -2 2 -
2

int
array

 Pin Outputs

Pin Name Description Signal Type

1 output int matrix

 Notes/Equations

Int_M produces a matrix with integer entries. Entries are read from the1.
IntMatrixContents array parameter in rasterized order; for example, for an M × N
matrix, the first row is filled from left to right using the first N values from the array.
The IntMatrixContents value may be specified directly or these may be read from a2.
file. To use data from a file, replace the default coefficients with the string, <filename
. For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

629

 NumericExpression

Description: Numeric Expression Data output
Library: Numeric, Sources
Class: SDFNumericExpression

 Parameters

Name Description Default Type

Expression expression, which can be function of "Nsample" 0.0+j*0.0 complex

 Pin Outputs

Pin Name Description Signal Type

1 output numeric source output
signal

complex

 Notes/Equations

This component is used to generate numeric data output evaluated using an1.
expression. Expression can be any valid expression, following the syntax used for
writing expression on a VAR block.
If the Expression is dependent on predefined variable, Nsample, then the output will
be dependent on the sample number, which is incremented for each firing of this
component determined by the schedule.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

630

 NumericSource

Description: Numeric signal generator using dataset
Library: Numeric, Sources
Class: SDFNumericSource

 Parameters

Name Description Default Type Range

ControlSimulation if set to YES, Period (or if Period=0 then the index of last data
sample in the file) determines how long the simulation will run:
NO, YES

NO enum

Periodic if YES then output is periodic: NO, YES YES enum

Period period of the output waveform if Periodic=YES. If Period=0 then
period is the index of the last data sample read

0 int [0, ∞)

DataSet dataSet file to construct Expression from filename

Expression variable/sink name from dataset or a valid dataSet expression (
data can be multi dimensional from 1-D to 3-D)

 string

 Pin Outputs

Pin Name Description Signal Type

1 output Numeric source output signal anytype

 Notes/Equations

This component is used to generate numeric data output evaluated using a pre-1.
generated dataset. Expression can be any valid expression using variables available
in the dataset. The syntax used for writing expression is the same as writing an
expression to display the data in a Data Display window.
If the dataset was generated using a Sweep, and the expression results in
multidimensional data, the output will be matrix data. The expression must evaluate
into data that is up to 3-dimensional. Any expression that results in higher dimension
(> 3-D) data will error out. To reduce the dimensionality, use the "[..., ::, ...]"
operator.
For example, consider a design that has a NumericSink N1 and 3 levels of sweep. If
such a dataset is used for generating data using NumericSource and the Expression
was set to "N1", the simulation will error out saying it was 4- dimensional data. To fix
it you can use "N1[0, ::, ::, ::]", which will now generate 3-dimensional matrix data
at the output.
If the length of simulation is larger than the available data in the dataset, use the
Periodic and Period parameters to repeat the old data. The Periodic parameter must
be set to YES for the output to repeat after the sample number equal to Period. If
Periodic = YES and Period = 0, the Period will be the index on the last data read in

Advanced Design System 2011.01 - Numeric Components

631

the dataset, and all of the data from the dataset will be read and repeated. If Periodic
= NO, the output will be zero after all data is read.
If ControlSimulation = YES, Period will determine how long the simulation runs. If
Period = 0, the simulation will run until the last data in the dataset is read.
The variable specified in an expression cannot be a variable that represents matrix2.
data generated using DSP designs.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

632

 RampFix

Description: Fixed-Point Ramp Output
Library: Numeric, Sources
Class: SDFRampFix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFRampFix.html under your installation directory.

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

OutputPrecision precision of output in bits and accumulation 2.14 precision

Step increment from one sample to the next 1.0 fix (-∞,
∞)

Value initial (or latest) value output by RampFix 0.0 fix (-∞,
∞)

 Pin Outputs

Pin Name Description Signal Type

1 output fix

 Notes/Equations

RampFix generates a ramp signal, starting at Value (default 0.0) and incrementing by1.
the step size specified by Step (default 1.0).
This component uses two's-complement arithmetic; the values of the OutputPrecision2.
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).
The value of the Step and Value parameters and their precision in bits can be3.
specified using two different notations.
Specifying only a value in the dialog box would create a fixed-point number with the
default precision, which has a total length of 32 bits with the number of integer bits
set as required by the value of the parameter. For example, the default value 1.0
creates a fixed-point object with precision 2.30, and a value like 0.5 would create one
with precision 1.31.
An alternate way of specifying the value and the precision is to use the parentheses
notation, which will be interpreted as (value, precision). For example, (2.546, 3.5)

Advanced Design System 2011.01 - Numeric Components

633

would create a fixed-point object by casting the double-precision floating-point (real)
number 2.546 to a fixed-point precision of 3.5.
This component has three precision specifications:

OutputPrecision given by designer
Step parameter precision (default or given by designer)
Value parameter precision (default or given by designer)
Certain conditions must be satisfied to get reasonable results.
the Step parameter precision should not have more integer or fractional bits
than OutputPrecision. Otherwise, the extra (if any) fractional bits will be handled
according to the value of the RoundFix parameter and the extra (if any) integer
bits will be handled according to the value of the OverflowHandler parameter.
if Value is not equal to 0, the OutputPrecision should not have more integer or
fractional bits than Value parameter precision. Otherwise, the extra (if any)
fractional bits will be handled according to the value of the RoundFix parameter
and the extra (if any) integer bits will be handled according to the value of the
OverflowHandler parameter.
Examples (OverflowHandler = wrapped and RoundFix = TRUNCATE is assumed):
Specifying OutputPrecision = "5.1" and Step = 0.25, will result in a constant
output equal to the value of the Value parameter possibly wrapped and
truncated to fit the output precision.
Specifying OutputPrecision = "5.1", Step = 0.5 and Value = 4.0 (default
precision is 4.28) will result in an output starting at 4.0, incrementing by 0.5 at
each step and saturating when 7.5 is reached.
Specifying OutputPrecision = "4.1", Step = 0.75 and Value = "(3.0, 4.1)" will
result in an output starting at 3.0, incrementing by 0.5 at each step and
wrapping to −8 after 7.5 is reached. The same output is obtained if Value has
other precisions specified that have more integer or fractional bits than
OutputPrecision. For example, "(3.0, 6.3)" will produce the same results.

For information regarding numeric source signals, refer to Numeric Sources4.
(numeric).

Advanced Design System 2011.01 - Numeric Components

634

 RampFloat

Description: Ramp output
Library: Numeric, Sources
Class: SDFRampFloat
C++ Code: See doc/sp_items/SDFRampFloat.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Step increment from one sample to the next 1.0 real (-∞, ∞)

Value initial value output 0.0 real (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

RampFloat generates a ramp signal, starting at Value (default 0.0) and incrementing1.
by the step size (default 1.0) specified by the Step parameter.
Because doubles have finite precision, the maximum value that RampFloat can
output is Step/DBL_EPSILON. For example, for a Step of 1, the maximum is
1FFFFFFFFFFFFF, or 9007199254740991. After that value, the output will remain
constant.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

635

 RampInt

Description: Integer ramp output
Library: Numeric, Sources
Class: SDFRampInt
C++ Code: See doc/sp_items/SDFRampInt.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Step increment from one sample to the next 1 int (-∞, ∞)

Value initial value output 0 int (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output int

 Notes/Equations

RampInt generates an integer ramp signal, starting at Value (default 0) and1.
incrementing by the step size specified by Step (default 1).
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

636

 ReadFile

Description: Waveform output from file
Library: Numeric, Sources
Class: SDFReadFile
C++ Code: See doc/sp_items/SDFReadFile.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

FileName input file name file.txt filename

ControlSimulation control simulation: NO, YES NO enum

OutputType output type: zero padded, periodic periodic enum

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

ReadFile reads ASCII data from a file. The simulation can be halted at end of file, the1.
file contents can be periodically repeated, or the file contents can be padded with
zeroes.
The input file is to be a text file that contains real array data in ADS Ptolemy format.2.
For details on this file format refer to Understanding Parameters (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

637

 ReadFilePreProc

Description: Waveform output from file with preprocessing using a shell command
Library: Numeric, Sources
Class: SDFReadFilePreProc
Derived From: ReadFile

 Parameters

Name Description Default Unit Type Range

FileName input file name file.txt filename

ControlSimulation control simulation: NO, YES NO enum

OutputType output type: zero padded, periodic periodic enum

PerlFile data file pre-processing perl script filename

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

ReadFilePreProc pre-processes the ASCII datafile specified in the FileName1.
parameter, using the perl script provided in PerlFile parameter. It is equivalent to
executing the command `perl PerlFile FileName' then using the results as ASCII input
to the design. The original datafile is not modified; instead, the processed file is
temporarily saved in the data directory (under the name tmp<InstanceName>.txt)
and removed at the end of simulation. The simulation can be halted at the end of file,
the file contents can be periodically repeated, or these can be padded with zeroes.
The resulting file must be a text file that contains real array data in ADS Ptolemy2.
format. For details on this file format refer to Understanding Parameters (ptolemy) in
the ADS Ptolemy Simulation (ptolemy) documentation.
Use of this component is demonstrated in the File > Open > Example >3.
PtolemyDocExamples > Numeric_Sources_wrk. Open the networks design
ReadFilePreProc_example.
Also see: ReadFile (numeric).4.
For information regarding numeric source signals, refer to Numeric Sources5.
(numeric).

Advanced Design System 2011.01 - Numeric Components

638

 Rect

Description: Rectangular pulse output
Library: Numeric, Sources
Class: SDFRect
C++ Code: See doc/sp_items/SDFRect.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Height height of rectangular pulse 1.0 real (-∞, ∞)

Width width of rectangular pulse 8 int [0, ∞)

Period if greater than zero, repetition period of pulse stream 0 int [0, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output output signal real

 Notes/Equations

Rect generates a rectangular pulse of height and width specified by Height and1.
Width. If Period > 0, the pulse is repeated with the given period.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

639

 RectCx

Description: Complex rectangular pulse output
Library: Numeric, Sources
Class: SDFRectCx
C++ Code: See doc/sp_items/SDFRectCx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Height height of rectangular pulse 1.0 complex

Width width of rectangular pulse 240 int [0, ∞)

Period period of pulse stream 1024 int [0, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output output signal complex

 Notes/Equations

RectCx generates a complex rectangular pulse specified by Height and Width. If1.
Period > 0, the pulse is repeated with the given period.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

640

 RectCxDoppler

Description: Complex rectangular Doppler pulse output
Library: Numeric, Sources
Class: SDFRectCxDoppler
C++ Code: See doc/sp_items/SDFRectCxDoppler.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Width width of rectangular pulse 240 int [0, ∞)

Period period of pulse stream 1024 int [0, ∞)

Bandwidth signal bandwidth 1.0e9 real [0.0, ∞)

Te duration time 30.0*10^-6 real [0.0, ∞)

Fe emission frequency 3.0e9 real [0.0, ∞)

Fsimu simulation frequency 8.0e6 real [0.0, ∞)

Vn target velocity 150.0 real [0.0, ∞)

Tp pulse period 1.0e-3 real [0.0, ∞)

Np pulse number 16 int [0, ∞)

Fpor carrier frequency 3.0e9 real [0.0, ∞)

C light speed 3.0e8 real [0.0, 3e8)

SNRn signal-to-noise ratio 10.0 real [0, ∞)

SqrPthn square root of noise power 1.0 real [0, ∞)

Sdelay target delay 0 real [0.0, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output output signal complex

 Notes/Equations

RectCxDoppler generates a complex rectangular pulse of width specified by Width. If1.
Period > 0, the pulse is repeated with the given period.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

641

 RectFix

Description: Fixed-Point Rectangular Pulse Output
Library: Numeric, Sources
Class: SDFRectFix
Derived From: SDFFix
C++ Code: See doc/sp_items/SDFRectFix.html under your installation directory.

 Parameters

Name Description Default Type Range

OverflowHandler output overflow characteristic: wrapped, saturate,
zero_saturate, warning

wrapped enum

ReportOverflow simulation overflow error report option: DONT_REPORT,
REPORT

REPORT enum

RoundFix fixed-point computations, assignments, and data type
conversions option: TRUNCATE, ROUND

TRUNCATE enum

Height height of rectangular pulse 1.0 fix (-∞,
∞)

Width width of rectangular pulse 8 int [0, ∞)

Period period of pulse stream 0 int [0, ∞)

OutputPrecision precision of output in bits and accumulation 2.14 precision

 Pin Outputs

Pin Name Description Signal Type

1 output output signal fix

 Notes/Equations

RectFix generates a fixed-point rectangular pulse specified by Height and Width. If1.
Period > 0, the pulse is repeated with the given period.
OutputPrecision is specified using an l.r format, where l is the number of bits to the2.
left of the decimal place (including the sign bit) and r is the number of bits to the
right of the decimal place. For example, the precision 2.22 would represent a 24-bit
fixed-point number with 1 sign bit, 1 integer bit, and 22 fractional bits.
This component uses two's-complement arithmetic; the values of the OutputPrecision3.
parameter given by the designer must specify at least 1 bit to the left of the decimal
place (used a sign bit).
For information regarding numeric source signals, refer to Numeric Sources4.
(numeric).

Advanced Design System 2011.01 - Numeric Components

642

 SineGen

Description: Sine wave output
Library: Numeric, Sources
Class: SDFSineGen
C++ Code: See doc/sp_items/SDFSineGen.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

RadiansPerSample radians per sample pi/50 real (-∞, ∞)

InitialRadians initial phase, in radians 0 real (-∞, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output output signal real

 Notes/Equations

SineGen generates the sequence of numbers given by sin(ω × n +Φ), n = 0, 1, ... ,1.
where ω equals RadiansPerSample and Φ equals InitialRadians.
For information regarding numeric source signals, refer to Numeric Sources2.
(numeric).

Advanced Design System 2011.01 - Numeric Components

643

 WaveForm

Description: Waveform output
Library: Numeric, Sources
Class: SDFWaveForm
C++ Code: See doc/sp_items/SDFWaveForm.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Value waveform values 1 -1 real array

ControlSimulation control simulation: NO, YES NO enum

Periodic periodic output: NO, YES YES enum

Period period of waveform when greater than zero 0 int [0, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

Waveform outputs a waveform specified by Value. You can get periodic signals with1.
any period, and halt a simulation at the end of the given waveform. Waveform
Outputs summarizes the operations.
Value can be specified directly or read from a file. To use data from a file, replace the
default coefficients with the string, <filename. For details using arrays of data for
parameter values, refer to Understanding Parameters (ptolemy) in the ADS Ptolemy
Simulation (ptolemy) documentation. The size of the array is currently limited to
20,000 samples. The complete file is be read and its contents stored in an array. To
read longer files use the ReadFile component, which reads one sample at a time and
therefore uses less storage.

 Waveform Outputs

StopSimulation Periodic Period Operation

do not stop yes 0 period is length of waveform

do not stop yes N>0 period is N

do not stop no any output the waveform once, then zeros

stop at end any any stop after outputting the waveform once

For information regarding numeric source signals, refer to Numeric Sources2.

Advanced Design System 2011.01 - Numeric Components

644

(numeric).

Advanced Design System 2011.01 - Numeric Components

645

 WaveFormCx

Description: Complex waveform output
Library: Numeric, Sources
Class: SDFWaveFormCx
C++ Code: See doc/sp_items/SDFWaveFormCx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Value waveform values (1) (-1) complex array

ControlSimulation control simulation: NO, YES NO enum

Periodic periodic output: NO, YES YES enum

Period period of waveform when greater than zero 0 int [0, ∞)

 Pin Outputs

Pin Name Description Signal Type

1 output complex

 Notes/Equations

WaveFormCx outputs a complex waveform as specified by Value. You can get1.
periodic signals with any period, and halt a simulation at the end of the given
waveform. Waveform Operations are summarized below.
The Value may be specified directly or these may be read from a file. To use data
from a file, replace the default coefficients with the string, <filename. The size of the
array is currently limited to 20,000 samples. The entire file will be read and its
contents stored in an array. To read longer files, use the ReadFile component, which
reads one sample at a time and therefore uses less storage.

 Waveform Operations

StopSimulation Periodic Period Operation

do not stop yes 0 period is length of waveform

do not stop yes N>0 period is N

do not stop no any output the waveform once, then zeros

stop at end any any stop after outputting the waveform once

For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the

Advanced Design System 2011.01 - Numeric Components

646

ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric source signals, refer to Numeric Sources3.
(numeric).

Advanced Design System 2011.01 - Numeric Components

647

 Window

Description: Window data
Library: Numeric, Sources
Class: SDFWindow
C++ Code: See doc/sp_items/SDFWindow.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Name name of window function to generate (Rectangle, Bartlett,
Hanning, Hamming, Blackman, SteepBlackman, or Kaiser)

Hanning string

Length length of window function to produce 256 int [4, ∞)

Period period of the output 0 int [0, ∞)

WindowParameters array of values for the window 0 real
array

 Pin Outputs

Pin Name Description Signal Type

1 output real

 Notes/Equations

Window generates standard window functions or periodic repetitions of standard1.
window functions. One period of samples is produced at each simulation. It produces
output values that are samples of a standard windowing function.
Length is the length of the window to produce; most window functions have a 0 value2.
at the first and last sample.
Period specifies the period of the output signal. The window will be zero-padded if3.
required. Period = 0 means a period equal to Length.
A negative period will produce one window, then output 0 for all later samples. A
period of less than the window length will be equivalent to a period of the window
length (that is, Period = 0).
For the Kaiser window, the first entry in WindowParameters is taken as the beta4.
parameter that is proportional to the stopband attenuation of the window.
The WindowParameters value may be specified directly or these may be read from a5.
file. To use data from a file, replace the default coefficients with the string, <filename.
For details on using arrays of data for parameter values, refer to Understanding
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric source signals, refer to Numeric Sources6.
(numeric).

 References

Advanced Design System 2011.01 - Numeric Components

648

Leland Jackson, Digital Filters and Signal Processing, 2nd ed., Kluwer Academic1.
Publishers, ISBN 0-89838-276-9, 1989.

Advanced Design System 2011.01 - Numeric Components

649

 Numeric Special Functions
AdaptLinQuant (numeric)
Compress (numeric)
DeadZone (numeric)
Dirichlet (numeric)
Expand (numeric)
LatchClocked (numeric)
Limit (numeric)
LinQuantIdx (numeric)
MuLaw (numeric)
OrderTwoInt (numeric)
PcwzLinear (numeric)
Polynomial (numeric)
Quant (numeric)
QuantIdx (numeric)
Quantizer (numeric)
Quantizer2D (numeric)
SchmittTrig (numeric)
Table (numeric)
TableCx (numeric)
TableInt (numeric)
Toggle (numeric)
Unwrap (numeric)

The numeric special functions components provide data processing functions common to
communication systems such as signal quantizers, signal compressor, signal expandors
and other block that operate on single data points or arrays of data that are integer,
double precision floating-point (real), or complex values. Each component accepts a
specific class of signal and outputs a resultant signal. (These components do not accept
any matrix class of signal.)

If a component receives another class of signal, the received signal is automatically
converted to the signal class specified as the input of the component. Auto conversion
from a higher to a lower precision signal class may result in loss of information. The auto
conversion from timed, complex or floating-point (real) signals to a fixed signal uses a
default bit width of 32 bits with the minimum number of integer bits needed to represent
the value. For example, the auto conversion of the floating-point (real) value of 1.0
creates a fixed-point value with precision of 2.30, and a value of 0.5 would create one of
precision of 1.31. For details on conversions between different classes of signals, refer to
Conversion of Data Types (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Some components accept parameter values that are arrays of data. The syntax for
referencing arrays of data as parameter values includes an explicit list of values, a
reference to a file that contains those values, or a combination of explicit values along
with file references. For details on using arrays of data for parameter values, refer to
Understanding Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy)
documentation.

Advanced Design System 2011.01 - Numeric Components

650

 AdaptLinQuant

Description: Adaptive linear quantizer
Library: Numeric, Special Functions
Class: SDFAdaptLinQuant
C++ Code: See doc/sp_items/SDFAdaptLinQuant.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Bits number of bits 8 int [1, 31]

 Pin Inputs

Pin Name Description Signal Type

1 input real

2 inStep real

 Pin Outputs

Pin Name Description Signal Type

3 amplitude real

4 outStep real

5 stepLevel int

 Notes/Equations

AdaptLinQuant quantizes the input to the number of levels given by 2 Bits . The1.
quantization levels are uniformly spaced at the step size given by the inStep input
value and are odd symmetric about zero. Therefore, the high threshold is (2 Bits − 1

)(inStep/2), and the low threshold is the negative of the high threshold.
Rounding to the nearest level is performed. The output level will equal high only if2.
the input level equals or exceeds high. If the input is below low, then the quantized
output will equal low.
The quantized value is output on the amplitude port as a floating-point (real) value,3.
the step size is output on the outStep port as a floating-point (real) value, and the
index of the quantization level is output on the stepLevel port as a non-negative
integer between 0 and 2 Bits − 1.
For information regarding numeric special function component signals, refer to4.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

651

 Compress

Description: Compression part of a compander
Library: Numeric, Special Functions
Class: SDFCompress
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

Type compression law: MU-law, A-law MU-law enum

CompressionK compression constant 1 real

Max maximum input value
magnitude

1 real (0.0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

Compress can be used to obtain the MU-law and A-law compression characteristics.1.
The output signal is always a baseband signal.
Let x′ (n) = x(n)/Max2.
MU-law:

A-law:

where
y(n) is the Output for sample n
x(n) is the Input for sample n
V M is Max, the maximum input value magnitude

µ is the compression constant for MU-law
A is the compression constant for A-law

Advanced Design System 2011.01 - Numeric Components

652

The output signal versus input signal plot of the Compress component, with Type =3.
MU-law, CompressionK = 255, and Max = 1V, is shown below.

 Compress Signal Plot

For information regarding numeric special function component signals, refer to1.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

653

 DeadZone

Description: Dead Zone Nonlinearity
Library: Numeric, Special Functions
Class: SDFDeadZone
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

K magnitude gain 1 real (-∞, 0.0) or (0.0, ∞)

Low lower dead zone value 0 real (-∞, High)

High higher dead zone value 1 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

DeadZone models a dead zone nonlinearity. Its output is always a floating-point1.
(real) signal.

where:
y(n) is the output for sample n
x(n) is the input for sample n
K is the magnitude of the gain
V h is the High dead zone value

V l is the Low dead zone value

The output signal versus input signal plot of DeadZone, with K = 1, Low = 0 and High2.
= 1, is shown below.

Advanced Design System 2011.01 - Numeric Components

654

 DeadZone Signal Plot

For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

655

 Dirichlet

Description: Dirichlet (aliased sinc) function
Library: Numeric, Special Functions
Class: SDFDirichlet
C++ Code: See doc/sp_items/SDFDirichlet.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

N length of Dirichlet kernel 10 int (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input The input x to the Dirichlet kernel. real

 Pin Outputs

Pin Name Description Signal Type

2 output The output of the Dirichlet kernel. real

 Notes/Equations

Dirichlet computes the normalized Dirichlet kernel (also called the aliased sinc1.
function).
The value of the normalized Dirichlet kernel at x = 0 is always 1, and the normalized2.
Dirichlet kernel oscillates between −1 and +1. The normalized Dirichlet kernel is
periodic in x with a period of either 2 π when N is odd or 4 π when N is even.
The Dirichlet kernel is the discrete-time Fourier transform (DTFT) of a sampled pulse3.
function. The parameter N is the length of the pulse [1].
See also: Sinc (numeric) component.
For information regarding numeric special function component signals, refer to4.
Numeric Special Functions (numeric).

 References

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall:1.
Englewood Cliffs, NJ, 1989.

Advanced Design System 2011.01 - Numeric Components

656

 Expand

Description: Expander part of a compander
Library: Numeric, Special Functions
Class: SDFExpand
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

Type compression law: MU-law, A-law MU-law enum

CompressionK compression constant 1 real

Max maximum input value
magnitude

1 real (0.0, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

Expand can be used to obtain the A-law and MU-law expansion characteristics. The1.
output of this component is always a baseband signal.
The following equations describe the characteristics of the component:2.
Let

Then
MU-law:

A-law:

Advanced Design System 2011.01 - Numeric Components

657

where:
y(n) is the output for sample n
x(n) is the input for sample n
V M is Max, the maximum input value magnitude

µ is the compression constant for MU-Law
A is the compression constant for A-Law
The output signal versus input signal plot of the Expand component, with Type = MU-3.
law, CompressionK = 255, and Max = 1V, is shown below.

 Expand Component Signal Plot

For information regarding numeric special function component signals, refer to4.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

658

 LatchClocked

Description: Data Latch with Clock Input
Library: Numeric, Special Functions
Class: SDFLatchClocked
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

ResetCx complex output when reset pin is high 0.0 complex

 Pin Inputs

Pin Name Description Signal Type

1 input input signal complex

2 clock clock signal int

3 reset reset signal int

 Pin Outputs

Pin Name Description Signal Type

4 output output signal complex

 Notes/Equations

LatchClocked can be used to latch complex numbers. The input is latched with the1.
positive edge of the clock. The outputs can be reset asynchronously to the values
specified by input2 and input3 by setting the signal at the reset pin to high.
The component is positive edge sensitive to the clock input and level sensitive to the
reset input. The reset signal is asynchronous.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

659

 Limit

Description: Limiter
Library: Numeric, Special Functions
Class: SDFLimit
C++ Code: See doc/sp_items/SDFLimit.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

K magnitude gain 1.0 real (-∞ 0.0) or (0.0, ∞)

Bottom lower output saturation value 0.0 real (-∞, Top)

Top higher output saturation value 1.0 real (-∞, ∞)

Type type of limiting curve: linear, atan linear enum

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Limit can be used to model two different types of limiting nonlinearities. The output is1.
always a floating-point (real) signal.
If Type = linear2.

If Type = atan3.
y(n) = offset + scale * atan((K*x(n) - offset) / scale), where:
y(n) is the output for sample n
x(n) is the input for sample n

Advanced Design System 2011.01 - Numeric Components

660

K is the magnitude gain
scale = (Vh - Vl)/pi

offset = (Vh + Vl)/2

Vl is the lower output saturation value (Bottom)

Vh is the higher output saturation value (Top)

The output signal versus input signal plot of Limit (parameters K = 1, Vl = −1, and Vh4.

= 1) is shown below for linear and atan types.

 Limit Component Signal Plot

For information regarding numeric special function component signals, refer to5.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

661

 LinQuantIdx

Description: Uniform quantizer with step number output
Library: Numeric, Special Functions
Class: SDFLinQuantIdx
C++ Code: See doc/sp_items/SDFLinQuantIdx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Levels number of quantization levels 128 int [1, ∞)

Low lower limit of signal excursion -3.0 real (-∞, High)

High upper limit of signal excursion 3.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 amplitude real

3 stepNumber int

 Notes/Equations

LinQuantIdx quantizes the input value to the number of levels given by the Levels1.
parameter plus 1. The quantization levels are uniformly spaced between Low and
High inclusive. Rounding down is performed-the output level will equal High if the
input level equals or exceeds High; if the input is below Low, the quantized output
will equal Low. The quantized value is output to the SignalOut port, while the index of
the quantization is output to the StepNumber port. This integer output is useful for
components that need an integer input.
For information regarding numeric special function component signals, refer to2.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

662

 MuLaw

Description: Mu law compressor
Library: Numeric, Special Functions
Class: SDFMuLaw
C++ Code: See doc/sp_items/SDFMuLaw.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Compress enable compression 1 int

Mu mu parameter, a positive integer 255 int [0, ∞)

Denom denominator of mu-law definition 1.0 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

MuLaw transforms the input using a logarithmic mapping if the Compress parameter1.
is true. In telephony, applying µ−law to 8-bit sampled data is called companding and
is used to quantize the dynamic range of speech more accurately [1]. The
transformation is defined in terms of the non-negative integer parameter Mu:

where
y(n) is the output for sample n
x(n) is the input for sample n
For information regarding numeric special function component signals, refer to2.
Numeric Special Functions (numeric).

 References

S. Haykin, Communication Systems 3rd ed., John Wiley Sons, 1994, p. 380.1.

Advanced Design System 2011.01 - Numeric Components

663

 OrderTwoInt

Description: Ordered Two Integer Output
Library: Numeric, Special Functions
Class: SDFOrderTwoInt
C++ Code: See doc/sp_items/SDFOrderTwoInt.html under your installation directory.

 Pin Inputs

Pin Name Description Signal Type

1 upper int

2 lower int

 Pin Outputs

Pin Name Description Signal Type

3 greater int

4 lesser int

 Notes/Equations

OrderTwoInt takes two inputs and outputs the greater and lesser of the two integer1.
inputs.

where
y 1 is the greater output

y 2 is the lesser output

x 1 is the upper input

x 2 is the lower input

For information regarding numeric special function component signals, refer to2.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

664

 PcwzLinear

Description: Piecewise Linear Map Output
Library: Numeric, Special Functions
Class: SDFPcwzLinear
C++ Code: See doc/sp_items/SDFPcwzLinear.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Breakpoints endpoints and breakpoints in the
mapping

(-1.0,-1.0) (0.0,1.0) (1.0,-
1.0)

 complex
array

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

PcwzLinear implements a piecewise linear mapping from the input to the output.1.
Mapping is given by a sequence of (x,y) pairs that specify breakpoints in the
function; the sequence of x values must be increasing. The function implemented by
this component can be represented by drawing straight lines between the (x,y) pairs,
in sequence. (Each input value will be treated as a point on the x axis; the
corresponding y value will be assigned to the output.)
Default mapping is the tent map, in which inputs between −1.0 and 0.0 are linearly
mapped into the range −1.0 to 1.0.
Inputs between 0.0 and 1.0 are mapped into the same range, but with opposite
slope, 1.0 to −1.0. If the input is outside the range specified in the x values of the
breakpoints, then the appropriate extreme value will be used for the output.
Therefore, for the default map: if the input is −2.0, the output will be −1.0; if the
input is +2.0, the output will again be −1.0.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

665

Advanced Design System 2011.01 - Numeric Components

666

 Polynomial

Description: Polynomial input-output relationship
Library: Numeric, Special Functions
Class: SDFPolynomial

 Parameters

Name Description Default Unit Type Range

Coefficients Polynomial coefficients, 0-th order coefficient first 0 1 real array

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

This component models a system with a polynomial input-output relationship. If the1.
input is x, the output is y = c 0 + c 1 × x + c 2 × x 2 + ... + c N × x N, where N is the

order of the polynomial and c 0 , ... , c N are the elements of the Coefficients

parameter.
For information regarding numeric special function component signals, refer to2.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

667

 Quant

Description: Quantizer
Library: Numeric, Special Functions
Class: SDFQuant
C++ Code: See doc/sp_items/SDFQuant.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Thresholds quantization thresholds, in increasing order 0.0 real array

Levels output levels. If empty use 0, 1, 2, ... real array

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Quant quantizes the input value to one of N+1 possible output levels using N1.
thresholds.

For input ≤ n th threshold, but > all previous thresholds, the output will be the n
th level.
For input > all thresholds, the output is N+1 th level.
For input < all thresholds, the output is 0 th level.

If the level is specified, there must be one more level than thresholds. The default2.
value for level is 0, 1, 2, ... N.
This component takes on the order of log N steps to find the right level, whereas the
linear quantizer component LinQuantIdx takes a constant amount of time. Therefore,
for linear quantization, use the LinQuantIdx component.
Assume that the Thresholds parameter is set to (8.1, 9.2, 10.3) and that the Levels3.
parameter is not set so that the default values of (0.0, 1.0, 2.0, 3.0) are used. An
input of −1.5 would give an output of 0.0; an input of 8.2 would give an output of
1.0; and, an input of 15.5 would give an output of 3.0.
For details on using arrays of data for parameter values, refer to Understanding4.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to5.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

668

Advanced Design System 2011.01 - Numeric Components

669

 QuantIdx

Description: Quantizer with Step Number Output
Library: Numeric, Special Functions
Class: SDFQuantIdx
C++ Code: See doc/sp_items/SDFQuantIdx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Thresholds quantization thresholds, in increasing order 0.0 real array

Levels output levels. If empty use 0, 1, 2, ... real array

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

3 stepNumber Level of the quantization from 0 to N-1 int

 Notes/Equations

QuantIdx quantizes the input value to one of N+1 possible output levels using N1.
thresholds. This component also outputs the quantization level (stepNumber).
For an input less than or equal to the n th threshold, but larger than all previous
thresholds, the output will be the n th level. If the input is greater than all thresholds,
the output is the N+1 th level. If the input is less than all thresholds, the output is the
0 th level.
If the level is specified, there must be one more level than thresholds. The default2.
value for level is 0, 1, 2, ... N. This component takes on the order of log N steps to
find the right level, whereas the linear quantizer component LinQuantIdx takes a
constant amount of time. Therefore, for linear quantization, use the LinQuantIdx
component.
Assume that the Thresholds parameter is set to (8.1, 9.2, 10.3) and that the Levels3.
parameter is not set so that the default values of (0.0, 1.0, 2.0, 3.0) are used. An
input of −1.5 would give an output of 0.0; an input of 8.2 would give an output of
1.0; and, an input of 15.5 would give an output of 3.0.
For details on using arrays of data for parameter values, refer to Understanding4.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to5.

Advanced Design System 2011.01 - Numeric Components

670

Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

671

 Quantizer

Description: Quantizer Using CodeBook
Library: Numeric, Special Functions
Class: SDFQuantizer
C++ Code: See doc/sp_items/SDFQuantizer.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

FloatCodebook possible output values 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 real array

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output Closest value in the codebook real

3 outIndex Index of the closest value in the codebook int

 Notes/Equations

Quantizer quantizes the input value to the nearest output value in the given1.
codebook. The nearest value is found by a full search of the codebook, so this
component will be significantly slower than either the Quant or LinQuantIdx
components. The absolute value of the difference is used as a distance measure. The
index of the closest value in the codebook is also output.
For details on using arrays of data for parameter values, refer to Understanding2.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

672

 Quantizer2D

Description: 2-dimensional quantizer
Library: Numeric, Special Functions
Class: SDFQuantizer2D
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

VxMax maximum real output level 1.0 real (-∞, ∞)

VxMin minimum real output level -1.0 real (-∞, VxMax)

Nx number of real output levels 16 int [1, ∞)

VyMax maximum imaginary output level 1.0 real (-∞, ∞)

VyMin minimum imaginary output level -1.0 real (-∞, VyMax)

Ny number of imaginary output levels 16 int [1, ∞)

QuantList user-defined quantization points complex array

 Pin Inputs

Pin Name Description Signal Type

1 input input signal complex

 Pin Outputs

Pin Name Description Signal Type

2 output output signal complex

 Notes/Equations

The complex number input is mapped to one of a finite set of complex numbers. Any1.
arbitrary set of points can be specified as the set of output points by using a file or a
list, or else the parameters VxMax, VxMin, Nx, VyMax, VyMin and Ny can be used to
set up a rectangular grid of output points.
The ability to specify output points by a file or a list can be used to define arbitrary
2D quantizers. Each input is mapped to the nearest output point, where the metric
used to determine the nearest output point is the Euclidean distance. This type of a
quantizer is also referred to as a Voronoi or a nearest neighbor vector quantizer [1].
2D Quantizer with Three Output Points shows an example where three output points
P1, P2, and P3 have been specified. The entire 2D plane is then divided into 3
regions, R1, R2, and R3, which are shown by the dotted lines. Any input point in
region R1 is mapped to the output point P1 (and similarly for the other regions).
2D Quantizer with Output Points On a Grid illustrates how a rectangular grid of
output points can be set up by using the parameters VxMax, VxMin, Nx, VyMax,

Advanced Design System 2011.01 - Numeric Components

673

VyMin and Ny.
Due to the regular lattice structure of this quantizer, it can be implemented efficiently
in terms of speed. Therefore, it is more efficient to use this second method of
specifying a quantizer than using a file or a list of output points.
When a file or list is used to specify the list of output points, data is entered for the
QuantList parameter as an ordered list of complex values.
Data entered as an explicit array has the form:
QuantList = "(1, 0) (0.707, 0.707) (0, 1) (− 0.707, 0.707) (− 1, 0) (−
0.707, − 0.707) (0, − 1) (0.707, − 0.707)"
As an alternative from an explicit list, this dataset can be contained in a text file and
referenced by name as follows:
QuantList = "<myquantlist.cx"

where the file named myquantlist.cx must be located in the current workspace data
subdirectory. If not in the data subdirectory, then the file name must include the full
directory path as the prefix to the file name. The contents of this file is simply the
complex values where the separator can be a comma, space, tab, or new line, with
one or more complex pairs per line:
(1, 0) (0.707, 0.707)
(0, 1) (−0.707, 0.707)
(−1, 0) (−0.707, −0.707)
(0, −1) (0.707, −0.707)
This above dataset can be used to create a quantizer for an 8PSK receiver whose
signal set consists of 8 points equally spaced on a unit circle. Quantizer2D shows the
points and the decision regions (in dotted lines) for this quantizer.
For details on complex parameter values, refer to Complex-Valued Parameters2.
(ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For details on using complex arrays of data, refer to Value Types (ptolemy) in the
ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

 2D Quantizer with Three Output Points

 2D Quantizer with Output Points On a Grid

Advanced Design System 2011.01 - Numeric Components

674

 Quantizer2D

Advanced Design System 2011.01 - Numeric Components

675

 SchmittTrig

Description: Schmitt Trigger
Library: Numeric, Special Functions
Class: SDFSchmittTrig
Derived From: baseOmniSysNumericStar

 Parameters

Name Description Default Unit Type Range

ILow lower input trigger value -1 real (-∞, IHigh)

IHigh higher input trigger value 1 real (-∞, ∞)

OLow lower output trigger value -1 real (-∞, OHigh)

OHigh higher output trigger value 1 real (-∞, ∞)

 Pin Inputs

Pin Name Description Signal Type

1 input input signal real

 Pin Outputs

Pin Name Description Signal Type

2 output output signal real

 Notes/Equations

SchmittTrig is a Schmitt trigger with programmable levels. The output is always a1.
floating-point (real) signal.
The output signal versus input signal plot, with parameters ILow = −1, IHigh = 1,2.
OLow = −1, and OHigh = 1, is shown below.

 SchmittTrig Signal Plot

Advanced Design System 2011.01 - Numeric Components

676

For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

677

 Table

Description: Indexed Lookup Table Output
Library: Numeric, Special Functions
Class: SDFTable
C++ Code: See doc/sp_items/SDFTable.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Values table of values to output {-1, 1} real array

 Pin Inputs

Pin Name Description Signal Type

1 input int

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Table implements a real-valued lookup table indexed by an integer-valued input. The1.
input values must be between 0 and N − 1, inclusive, where N is the size (number of
elements) of the Values parameter. N must be less than 20,000. The first element of
the Values parameter is indexed by an input with value 0. The last element of the
Values parameter is indexed by an input with value N − 1. An error occurs if the
input value is outside the interval [0, N − 1].
Example. Let's assume the Values parameter is set to {-1.0, -0.333, 0.333, 1.0} (the2.
4 signal levels of a PAM-4 system). If the input signal values are 0, 0, 3, 1, 0, 1, 3, 2,
3, 1, 0, 2, then the output signal values will be -1.0, -1.0, 1.0, -0.333, -1.0, -0.333,
1.0, 0.333, 1.0, -0.333, -1.0, 0.333.
For details on using arrays of data for parameter values, refer to Understanding3.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to4.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

678

 TableCx

Description: Indexed Complex Lookup Table Output
Library: Numeric, Special Functions
Class: SDFTableCx
C++ Code: See doc/sp_items/SDFTableCx.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Values table of values to output {(1), (j), (-1), (-j), (0), (1), (j), (1)} complex array

 Pin Inputs

Pin Name Description Signal Type

1 input int

 Pin Outputs

Pin Name Description Signal Type

2 output complex

 Notes/Equations

TableCx implements a complex-valued lookup table indexed by an integer-valued1.
input. The input must lie between 0 and N − 1, inclusive, where N is the size of the
table. The table of values listed for the Values parameter must be less than 20,000
values long. Its first component is indexed by a zero-valued input. An error occurs if
the input value is out of the array bounds.
The input must be in the range: 0 ≤ input < size of Values.
For details on using arrays of data for parameter values, refer to Understanding2.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

679

 TableInt

Description: Indexed Integer Lookup Table Output
Library: Numeric, Special Functions
Class: SDFTableInt
C++ Code: See doc/sp_items/SDFTableInt.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

Values table of values to output {-1, 1} int array

 Pin Inputs

Pin Name Description Signal Type

1 input int

 Pin Outputs

Pin Name Description Signal Type

2 output int

 Notes/Equations

TableInt implements an integer-valued lookup table indexed by an integer-valued1.
input. The input must lie between 0 and N − 1, inclusive, where N is the size of the
table. The table of values listed for the Values parameter must be less than 20,000
values long. Its first component is indexed by a zero-valued input. An error occurs if
the input value is out of the array bounds.
The input must be in the range: 0 ≤ input < size of Values.
For details on using arrays of data for parameter values, refer to Understanding2.
Parameters (ptolemy) in the ADS Ptolemy Simulation (ptolemy) documentation.
For information regarding numeric special function component signals, refer to3.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

680

 Toggle

Description: Data Toggle with Clock Input
Library: Numeric, Special Functions
Class: SDFToggle
Derived From: baseOmniSysNumericStar

 Pin Inputs

Pin Name Description Signal Type

1 input1 input signal 1 complex

2 input2 input signal 2 complex

3 control control signal real

 Pin Outputs

Pin Name Description Signal Type

4 output output signal complex

 Notes/Equations

Let1.
v 1 (t) = input1

v 2 (t) = input2

v 3 (t) = control

v 4 (t) = output,

then

Here, v 1 (t), v 2 (t) and v 4 (t) are complex valued signals with real and imaginary

parts. If v 3 (t) is complex valued, its imaginary part is ignored and only the real part

is considered.
For information regarding numeric special function component signals, refer to2.
Numeric Special Functions (numeric).

Advanced Design System 2011.01 - Numeric Components

681

 Unwrap

Description: Unwrap phase
Library: Numeric, Special Functions
Class: SDFUnwrap
C++ Code: See doc/sp_items/SDFUnwrap.html under your installation directory.

 Parameters

Name Description Default Unit Type Range

OutPhase initial output phase 0.0 real (-∞,
∞)

PrevPhase initial wrapped phase of input signal for computing the first phase
difference (phase change)

0.0 real (-∞,
∞)

 Pin Inputs

Pin Name Description Signal Type

1 input real

 Pin Outputs

Pin Name Description Signal Type

2 output real

 Notes/Equations

Unwrap unwraps a phase plot, removing discontinuities of magnitude 2 π. Unwrap1.
assumes that the phase never changes by more than π in one sample period; it also
assumes that the input is in the range [−π, π].
For information regarding numeric special function component signals, refer to2.
Numeric Special Functions (numeric).

	 SerDes Example Designs
	 8b10b Coder and Decoder
	 64b66b Coder and Decoder
	 Blind Adaptive Decision Feedback Equalizer
	 Adaptive Decision Feedback Equalizer with Training Sequence

	 WMAN Example Designs
	 Agilent Instrument Compatibility
	 WMAN IEEE 802.16 Specifications
	 WMAN System Designs
	 WMAN Design Example Descriptions
	 References

	 Numeric Advanced Comm Components
	 AddGuard
	 ConvolutionalCoder
	 CRC_Coder
	 CRC_Decoder
	 Deinterleaver802D
	 Demapper
	 Interleaver802
	 LoadIFFTBuff802
	 Mapper
	 MuxOFDMSym802
	 RMSE
	 ViterbiDecoder

	 Numeric Communications Components
	 8b10bCoder
	 8b10bDecoder
	 64b66bCoder
	 64b66bDecoder
	 ADPCM_Coder
	 ADPCM_Decoder
	 ADPCM_FromBits
	 ADPCM_ToBits
	 AWGN_Channel
	 BlindDFE
	 BlindFFE
	 BlockPredictor
	 CoderRS
	 DecoderRS
	 DeScrambler
	 DeSpreader
	 DFE
	 FFE
	 FreqPhase
	 HilbertSplit
	 InterleaveDeinterleave
	 M_PSK
	 NoiseChannel
	 NonlinearDistortion
	 PAM2Rec
	 PAM2Xmit
	 PAM4Rec
	 PAM4Xmit
	 PCM_BitCoder
	 PCM_BitDecoder
	 PhaseShift
	 PSK2Rec
	 PSK2Xmit
	 QAM4
	 QAM4Slicer
	 QAM16
	 QAM16Decode
	 QAM16Slicer
	 QAM64
	 QAM64Decode
	 QAM64Slicer
	 RaisedCosine
	 RaisedCosineCx
	 RecSpread
	 Scrambler
	 Spread
	 TelephoneChannel
	 WalshCoder
	 XmitSpread

	 Numeric Control Components
	 ActivatePath
	 ActivatePath2
	 AsyncCommutator
	 AsyncDistributor
	 Bus
	 BusMerge2
	 BusMerge3
	 BusMerge4
	 BusMerge5
	 BusMerge6
	 BusMerge7
	 BusMerge8
	 BusMerge9
	 BusSplit2
	 BusSplit3
	 BusSplit4
	 BusSplit5
	 BusSplit6
	 BusSplit7
	 BusSplit8
	 BusSplit9
	 Chop
	 ChopVarOffset
	 Commutator
	 Commutator2
	 Commutator3
	 Commutator4
	 Delay
	 DeMux
	 DeMux2
	 Distributor
	 Distributor2
	 Distributor3
	 Distributor4
	 DownSample
	 DSampleWOffset
	 EnableUDSample
	 Fork
	 Fork2
	 Fork3
	 Fork4
	 Fork5
	 Fork6
	 Fork7
	 Fork8
	 Fork9
	 IfElse
	 InitDelay
	 Mux
	 Mux2
	 Repeat
	 Reverse
	 Trainer
	 Transpose
	 UpSample
	 VarDelay

	 Numeric Fixed-Point DSP Components
	 AbsSyn
	 AccumSyn
	 AddRegSyn
	 AddSyn
	 And2Syn
	 AndSyn
	 BarShiftSyn
	 BitFillSyn
	 BPSKSyn
	 BufferSyn
	 Bus8MergeSyn
	 Bus8RipSyn
	 BusMergeSyn
	 BusRipSyn
	 CastSyn
	 CombFiltSyn
	 Comp6Syn
	 CompSyn
	 ConstSyn
	 CountCombSyn
	 CounterSyn
	 Div2ClockSyn
	 DPRamRegSyn
	 DPRamSyn
	 DPSKSyn
	 DualNCOSyn
	 FIRSyn
	 FixedGainSyn
	 FixToFloatSyn
	 FloatToFixSyn
	 FSMSyn
	 GainSyn
	 IntegratorSyn
	 LCounterSyn
	 MultRegSyn
	 MultSyn
	 Mux2Syn
	 Mux3Syn
	 Mux4Syn
	 MuxSyn
	 Nand2Syn
	 NCOSyn
	 Nor2Syn
	 NotSyn
	 OQPSKSyn
	 Or2Syn
	 OrSyn
	 PI4DQPSKSyn
	 PSK8Syn
	 QPSKSyn
	 RamRegSyn
	 RamSyn
	 RegSyn
	 RomRegSyn
	 RomSyn
	 SerialFIRSyn
	 ShiftRegPPSyn
	 ShiftRegPSSyn
	 ShiftRegSPSyn
	 SineCosineSyn
	 SinkRespSyn
	 SinkStimSyn
	 SubRegSyn
	 SymFIRSyn
	 Xor2Syn
	 XorSyn
	 ZeroInterpSyn

	 Numeric Logic Components
	 DFF
	 DivByN
	 JKFF
	 LFSR
	 Logic
	 LogicAND
	 LogicAND2
	 LogicInverter
	 LogicLatch
	 LogicNAND
	 LogicNAND2
	 LogicNOR
	 LogicNOR2
	 LogicOR
	 LogicOR2
	 LogicXNOR
	 LogicXNOR2
	 LogicXOR
	 LogicXOR2
	 Multiple
	 Test
	 TestEQ
	 TestGE
	 TestGT
	 TestLE
	 TestLT
	 TestNE

	 Numeric Math Components
	 Abs
	 Add
	 Add2
	 AddCx
	 AddCx2
	 AddFix
	 AddFix2
	 AddInt
	 AddInt2
	 Average
	 AverageCx
	 AverageCxWOffset
	 Cos
	 DB
	 DivByInt
	 Exp
	 Floor
	 Gain
	 GainCx
	 GainFix
	 GainInt
	 Integrate
	 Ln
	 Math
	 MathCx
	 MaxMin
	 Modulo
	 ModuloInt
	 Mpy
	 Mpy2
	 MpyCx
	 MpyCx2
	 MpyFix
	 MpyFix2
	 MpyInt
	 MpyInt2
	 Reciprocal
	 SDC1
	 SDC2
	 SDC3
	 SDC4
	 SDCCx1
	 SDCCx2
	 SDCCx3
	 SDCCx4
	 Sgn
	 Sin
	 Sinc
	 Sqrt
	 Sub
	 SubCx
	 SubFix
	 SubInt
	 Trig
	 TrigCx
	 Variance

	 Numeric Matrix Components
	 Abs_M
	 Add2_M
	 AddCx2_M
	 AddCx_M
	 AddFix2_M
	 AddFix_M
	 AddInt2_M
	 AddInt_M
	 Add_M
	 AvgSqrErr_M
	 Conjugate_M
	 Delay_M
	 GainCx_M
	 GainFix_M
	 GainInt_M
	 Gain_M
	 Hermitian_M
	 InverseCx_M
	 InverseFix_M
	 InverseInt_M
	 Inverse_M
	 Kalman_M
	 MpyCx_M
	 MpyFix_M
	 MpyInt_M
	 Mpy_M
	 MpyScalarCx_M
	 MpyScalarFix_M
	 MpyScalarInt_M
	 MpyScalar_M
	 MxCom_M
	 MxDecom_M
	 PackCx_M
	 PackFix_M
	 PackInt_M
	 Pack_M
	 SampleMean_M
	 SubCx_M
	 SubFix_M
	 SubInt_M
	 Sub_M
	 SubMxCx_M
	 SubMxFix_M
	 SubMxInt_M
	 SubMx_M
	 SVD_M
	 TableCx_M
	 TableInt_M
	 Table_M
	 ToeplitzCx_M
	 ToeplitzFix_M
	 ToeplitzInt_M
	 Toeplitz_M
	 TransposeCx_M
	 TransposeFix_M
	 TransposeInt_M
	 Transpose_M
	 UnPkCx_M
	 UnPkFix_M
	 UnPkInt_M
	 UnPk_M

	 Numeric Signal Processing Components
	 Autocor
	 Biquad
	 BiquadCascade
	 BlockAllPole
	 BlockFIR
	 BlockLattice
	 BlockRLattice
	 Burg
	 ConvolCx
	 Convolve
	 CrossCorr
	 DelayEstimator
	 DTFT
	 FFT_Cx
	 FIR
	 FIR_Cx
	 FIR_Fix
	 Hilbert
	 IIR
	 IIR_Cx
	 IIR_Fix
	 Lattice
	 LevDur
	 LMS
	 LMS_Cx
	 LMS_Leak
	 LMS_OscDet
	 PattMatch
	 RLattice
	 SlidWinAvg

	 Numeric Sources
	 Bits
	 ComplexExp
	 Const
	 ConstCx
	 ConstFix
	 ConstInt
	 Cx_M
	 DataPattern
	 DiagonalCx_M
	 DiagonalFix_M
	 DiagonalInt_M
	 Diagonal_M
	 Fix_M
	 Float_M
	 IdentityCx_M
	 IdentityFix_M
	 IdentityInt_M
	 Identity_M
	 IID_Gaussian
	 IID_Uniform
	 ImpulseFloat
	 Int_M
	 NumericExpression
	 NumericSource
	 RampFix
	 RampFloat
	 RampInt
	 ReadFile
	 ReadFilePreProc
	 Rect
	 RectCx
	 RectCxDoppler
	 RectFix
	 SineGen
	 WaveForm
	 WaveFormCx
	 Window

	 Numeric Special Functions
	 AdaptLinQuant
	 Compress
	 DeadZone
	 Dirichlet
	 Expand
	 LatchClocked
	 Limit
	 LinQuantIdx
	 MuLaw
	 OrderTwoInt
	 PcwzLinear
	 Polynomial
	 Quant
	 QuantIdx
	 Quantizer
	 Quantizer2D
	 SchmittTrig
	 Table
	 TableCx
	 TableInt
	 Toggle
	 Unwrap

